欢迎访问作物学报,今天是

作物学报

• •    

小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究

吴美娟1,2,张寅辉2,李元昊2,刘海霞2,黄以琳2,李甜2,刘红霞2,张学勇2,郝晨阳1,2,*,郭杰1,*,侯健2,*   

  1. 1山西农业大学农学院 / 农业农村部有机旱作农业重点实验室(部省共建), 山西晋中 030801; 2中国农业科学院作物科学研究所 / 作物基因资源与育种全国重点实验室 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081
  • 收稿日期:2024-11-10 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-03-31
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1200404)资助。

Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat

WU Mei-Juan1,2,ZHANG Yin-Hui2,LI Yuan-Hao2,LIU Hai-Xia2,HUANG Yi-Lin2,LI Tian2,LIU Hong-Xia2,ZHANG Xue-Yong2,HAO Chen-Yang1,2,*,GUO Jie1,*,HOU Jian2,*   

  1. 1 College of Agronomy, Shanxi Agricultural University / Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Jinzhong 030801, Shanxi, China; 2 State Key Laboratory of Crop Gene Resources and Breeding / National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-11-10 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-03-31
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1200404).

摘要:

小麦是重要的粮食作物之一,持续提升其产量是育种的重要目标。提高粒重可以有效提高小麦单产,而小麦籽粒的主要成分是淀粉。为全面解析淀粉合成通路关键酶基因TaSUS2对籽粒淀粉合成的作用,本研究从小麦基因组中扩增TaSUS2的全长cDNA序列,在科农199中对TaSUS2进行基因编辑,获得2纯合二突材料(KO-1KO-2)1纯合的三突材料(KO-3)转基因材料表型鉴定发现,与野生型相比,TaSUS2的种子出现明显的皱缩,粒重显著下降且籽粒胚乳中淀粉含量、直链淀粉含量、绝对淀粉含量A淀粉的粒径也显著降低,表明TaSUS2影响粒重和籽粒中的淀粉合成。转录组分析发现TaSUS2-KO-3花后21 d的籽粒中淀粉合成通路上的多个主要合成酶基因上调表达。开发TaSUS2-2A-CAPS标记并鉴定了145份重测序材料,发现TaSUS2影响淀粉含量、湿面筋含量、蛋白质含量及沉降值等品质性状TaSUS2-2A-Hap-G是影响品质性状的优异单倍型。研究结果为阐析TaSUS2的生物学功能奠定了基础,也为未来小麦的高产优质分子育种提供了基因资源。

关键词: 小麦, TaSUS2, 粒重, 淀粉含量, 品质

Abstract:

Wheat is one of the world’s most important cereal crops, and improving yield remains a key goal in wheat breeding. Grain weight is a major determinant of yield, and starch is the primary component of wheat grains. To investigate the function of TaSUS2, a key enzyme gene in the starch synthesis pathway, we amplified its full-length cDNA sequence from the wheat genome and performed gene editing in the cultivar Kenong 199 (KN199). This resulted in the generation of two homozygous diploid mutants (KO-1 and KO-2) and one homozygous triploid mutant (KO-3). Phenotypic analysis of the transgenic lines revealed that TaSUS2 mutant grains exhibited pronounced wrinkling and a significant reduction in grain weight compared to the wild type. Additionally, the total starch content, amylose content, absolute starch content, and the diameter of A-type starch granules in the endosperm were significantly reduced in TaSUS2 mutant grains. These findings confirm that TaSUS2 plays a crucial role in starch synthesis and grain weight determination. Transcriptome analysis indicated that multiple enzyme-encoding genes involved in starch biosynthesis were upregulated in TaSUS2-KO-3 grains at 21 days post-anthesis. Furthermore, genotyping of a natural population of 145 wheat accessions using the TaSUS2-2A-CAPS marker revealed that TaSUS2 was significantly associated with starch content, wet gluten content, protein content, and sedimentation value. Notably, the TaSUS2-2A-Hap-G haplotype was identified as a favorable allele for these quality traits. Overall, this study provides valuable insights into the biological function of TaSUS2 and offers novel genetic resources for molecular breeding aimed at improving wheat yield and quality.

Key words: wheat, TaSUS2, grain weight, starch content, quality

[1] Gao Y J, Li Y S, Xia W Y, Dai M Q, Dai Y, Wang Y G, Ma H G, Ma H X. The regulation of grain weight in wheat. Seed Biol, 2023, 2: 17.

[2] Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, et al. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 1799–1814.

[3] Housley T L, Kirleis A W, Ohm H W, Patterson F L. An evaluation of seed growth in soft red winter wheat. Can J Plant Sci, 1981, 61: 525–534.

[4] Dale E M, Housley T L. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiol, 1986, 82: 7–10.

[5] Lu H F, Hu Y Y, Wang C Y, Liu W X, Ma G, Han Q X, Ma D Y. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Front Plant Sci, 2019, 10: 1414.

[6] Barron C, Surget A, Rouau X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci, 2007, 45: 88–96.

[7] Zuo J R, Li J Y. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev, 2014, 1: 253–276.

[8] International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788.

[9] Kumar R, Mukherjee S, Ayele B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review. Biotechnol Adv, 2018, 36: 954–967.

[10] Deol K K, Mukherjee S, Gao F, Brûlé-Babel A, Stasolla C, Ayele B T. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol, 2013, 13: 181.

[11] Beckles D M, Smith A M, Rees T A. A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol, 2001, 125: 818–827.

[12] Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328: 307–317.

[13] Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827–831.

[14] Sun J, Loboda T, Sung S J, Black C C. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol, 1992, 98: 1163–1169.

[15] Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J, 1995, 7: 97–107.

[16] Chevalier P, Lingle S E. Sugar metabolism in developing kernels of wheat and Barley. Crop Sci, 1983, 23: 272–277.

[17] Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet, 1976, 14: 1041–1055.

[18] Tang G Q, Sturm A. Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol, 1999, 41: 465–479.

[19] Fan C F, Wang G Y, Wang Y M, Zhang R, Wang Y T, Feng S Q, Luo K M, Peng L C. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. Int J Mol Sci, 2019, 20: 4971.

[20] Yao D Y, Gonzales-Vigil E, Mansfield S D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. J Exp Bot, 2020, 71: 1858–1869.

[21] Chandran D, Sharopova N, VandenBosch K A, Garvin D F, Samac D A. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol, 2008, 8: 89.

[22] Ahmed I M, Nadira U A, Cao F B, He X Y, Zhang G P, Wu F B. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243: 973–985.

[23] Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49–61.

[24] Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, et al. The wheat sucrose synthase gene TaSus1 is a determinant of grain number per spike. Crop J, 2024, 12: 295–300.

[25] Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918–1929.

[26] Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13: 1733–1751.

[27] Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Elaine Barclay J, Fahy B, Hartley M, Warren F J, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol, 2021, 230: 2371–2386.

[28] Zhang Z F, Tan J X, Chen Y T, Sun Z, Yan X, Ouyang J X, Li S B, Wang X. New fructokinase, OsFRK3, regulates starch accumulation and grain filling in rice. J Agric Food Chem, 2023, 71: 1056–1066.

[29] Fahy B, Gonzalez O, Savva G M, Ahn-Jarvis J H, Warren F J, Dunn J, Lovegrove A, Hazard B A. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Sci Rep, 2022, 12: 10806.

[30] Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H X, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J Exp Bot, 2019, 70: 1497–1511.

[31] Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897–1907.

[32] Duncan K A, Hardin S C, Huber S C. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol, 2006, 47: 959–971.

[33] Pellny T K, Lovegrove A, Freeman J, Tosi P, Love C G, Paul Knox J, Shewry P R, Mitchell R A C. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol, 2012, 158: 612–627.

[34] Enders T A, Strader L C. Auxin activity: past, present, and future. Am J Bot, 2015, 102: 180–196.

[35] 于永超. 生长素-糖调控水稻弱势粒灌浆的生理机制研究. 南京农业大学硕士学位论文, 江苏南京, 2022.

Yu Y C. Mechanisms of Indole-3-acetic Acid (IAA) and Sugar Effects on the Inferior Spikelets Filling in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).

[36] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711.

[37] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102–11107.

[38] Zhao Z G, Zhang Y H, Liu X, Zhang X, Liu S C, Yu X W, Ren Y L, Zheng X M, Zhou K N, Jiang L, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell, 2013, 27: 113–122.

[39] Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119.

[40] Grover A, Sharma P C. Development and use of molecular markers: past and present. Crit Rev Biotechnol, 2016, 36: 290–302.

[41] Garrido-Cardenas J A, Mesa-Valle C, Manzano-Agugliaro F. Trends in plant research using molecular markers. Planta, 2018, 247: 543–557.

[42] Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10.

[43] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223.

[44] Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330–1342.

[45] Zhang Y J, Liu J D, Xia X C, He Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097–1107.

[46] 李辛丽. 小麦品质性状的QTL定位及优质资源筛选. 四川农业大学硕士学位论文, 四川成都, 2024.

Li X L. QTL for Wheat Quality Traits and Screening of High-quality Resources. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2024 (in Chinese with English abstract).

[47] 安悦. 湖北省小麦的HMW-GS组成及其与品质性状的相关分析. 华中农业大学硕士学位论文. 湖北武汉, 2023.

An Y. HMW-GS Composition and Its Correlation with Quality Characters of Wheat in Hubei. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).

[48] 关智仁. 小麦品种群体品质性状评价及GWAS分析. 山东农业大学硕士学位论文, 山东泰安, 2022.

Guan Z R. Evaluation of Quality Traits and Genome-wide Association Study (GWAS) Using Variety Population in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract).

[1] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[2] 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109.
[3] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[4] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[5] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[6] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[7] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[8] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[9] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[10] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[11] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
[12] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[13] 杨芳萍, 郭莹, 田媛媛, 徐玉凤, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382.
[14] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[15] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!