欢迎访问作物学报,今天是 2025年4月28日 星期一

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 79-90.doi: 10.3724/SP.J.1006.2025.44066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于SSR标记的青海蚕豆品种亲缘关系分析与指纹图谱构建

郑栋1,2(), 周仙莉1,2, 滕长才1,2,*(), 侯万伟1,2,4, 张红岩1,2, 刘玉皎1,3,*()   

  1. 1青海大学, 青海西宁 810016
    2青海省农林科学院, 青海西宁 810016
    3青海大学省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁 810016
    4国家农作物种质资源复份库, 青海西宁 810016
  • 收稿日期:2024-04-19 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: *刘玉皎, E-mail: 13997058356@163.com; 滕长才, E-mail: 13299761531@163.com
  • 作者简介:E-mail: 1304063128@qq.com
  • 基金资助:
    青海省重点研发与转化计划项目(2022-NK-109);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-G06)

Genetic relationship analysis and fingerprints construction of faba bean varieties in Qinghai province based on SSR markers

ZHENG Dong1,2(), ZHOU Xian-Li1,2, TENG Chang-Cai1,2,*(), HOU Wan-Wei1,2,4, ZHANG Hong-Yan1,2, LIU Yu-Jiao1,3,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    3State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
    4National Crop Germplasm Resources Duplicate Library, Xining 810016, Qinghai, China
  • Received:2024-04-19 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: *E-mail: 13997058356@163.com; E-mail: 13299761531@163.com
  • Supported by:
    Key Research and Development and Transformation Plan of Qinghai Province(2022-NK-109);China Agriculture Research System of MOF and MARA(CARS-08-G06)

摘要:

为明确青海蚕豆育成品种、高代品系和骨干亲本的群体结构与亲缘关系, 本研究利用46对多态性和稳定性好、重复性高的SSR引物对36个青海蚕豆主栽品种(品系)进行群体遗传学分析并构建了指纹图谱。结果表明, 通过毛细管电泳检测, 在46对引物中检测到262个等位位点, 各引物检测的多态性等位位点数(Na)为2~15, 平均等位位点数为5.696个, 平均每个位点检测到的有效等位基因数为2.988个, 范围为1.180~9.257; Shannon指数的变化范围为0.287~2.444, 均值为1.210; 多态性信息含量(polymorphism information content, PIC)值变化范围为0.141~0.883, 均值为0.553, 揭示了青海蚕豆品种丰富的遗传多样性。系统聚类将36份材料划分为4个亚群, 第I、II、III、IV亚群分别包括24、4、7、1份材料; 群体结构与主坐标分析将材料划分为2个亚群, 亚群I和亚群II分别包括17和19份材料, 与聚类分类结果有一定程度的交叉重合, 厘清了青海蚕豆主栽品种的群体遗传结构与亲缘关系。在此基础上, 筛选出4对核心引物, 构建了36份材料的指纹图谱, 并将相关信息储存在二维码中。青海蚕豆主栽品种指纹图谱的构建不仅为青海蚕豆品种鉴定提供了有效工具, 也为今后青海蚕豆品种亲本选配和新品种权保护提供了技术支撑。

关键词: 蚕豆, 青海, 主栽品种, SSR标记, 亲缘关系, 指纹图谱

Abstract:

To clarify the population structure and relationships among cultivated varieties, advanced lines, and backbone parents of faba bean in Qinghai province, forty-six pairs of SSR primers with high polymorphism, stability, and repeatability were used to analyze the genetic diversity of thirty-six varieties (lines) and construct genetic fingerprints. The results revealed that 262 alleles were detected using the forty-six primer pairs through capillary electrophoresis. The number of polymorphic alleles (Na) per primer ranged from two to fifteen, with an average of 5.696 alleles. The average number of effective alleles per locus was 2.988, ranging from 1.180 to 9.257. The Shannon index ranged from 0.287 to 2.444, with an average of 1.210. The polymorphism information content (PIC) varied from 0.141 to 0.883, with an average of 0.553, indicating rich genetic diversity among the faba bean varieties in Qinghai. Clustering analysis grouped the 36 materials into four subgroups: subgroup I (twenty-four materials), subgroup II (four materials), subgroup III (seven materials), and subgroup IV (one material). Population genetic structure and principal coordinate analyses divided the materials into two subgroups, with subgroup I containing seventeen materials and subgroup II containing nineteen materials. There was some overlap between the subgroups identified by clustering and those identified by population structure analysis, which clarified the genetic relationships and population structure of the main faba bean cultivars in Qinghai province. On this basis, four core primer pairs were selected to construct genetic fingerprints for the thirty-six materials, which were subsequently stored in a two-dimensional code. The fingerprinting of the main faba bean cultivars in Qinghai provides an effective tool for variety identification and offers technical support for parental selection and the protection of new varieties in future faba bean breeding programs in the region.

Key words: faba bean, Qinghai, main cultivars, SSR maker, genetic relationships, fingerprint

表1

36份供试材料信息"

编号
No.
材料名称
Material name
材料来源
Material source
生长习性
Growth habit
1 青海1号 Qinghai 1 牛角蚕豆中系统选育
Systematic selection of Niujiao faba bean
无限 Indeterminacy
2 青海2号 Qinghai 2 无限 Indeterminacy
3 青海3号 Qinghai 3 拉萨1号×互助东和蚕豆
Lhasa 1×Huzhudonghe faba bean
无限 Indeterminacy
4 青海4号 Qinghai 4 无限 Indeterminacy
5 青海5号 Qinghai 5 无限 Indeterminacy
6 青海6号 Qinghai 6 无限 Indeterminacy
7 青海8号 Qinghai 8 农14×103 Nong 14×103 无限 Indeterminacy
8 青海11号 Qinghai 11 72-45×新西兰 72-45×New Zealand 无限 Indeterminacy
9 青海12号 Qinghai 12 青海3号×马牙//72-45×英国176
Qinghai 3×Maya//72-45×UK176
无限 Indeterminacy
10 青海13号Qinghai 13 马牙×戴韦 Maya×Divine 无限 Indeterminacy
11 青蚕14号Qingcan 14 72-45×日本寸蚕 72-45× Japanese Cuncan 无限 Indeterminacy
12 青蚕15号Qingcan 15 湟中落角×96-49 Huangzhongluojiao ×96-49 无限 Indeterminacy
13 青蚕16号Qingcan 16 马牙×Flip88-243FB Maya×Flip88-243FB 有限 Determinacy
14 青蚕17号Qingcan 17 透心绿系选 Systematic selection of Touxinlyu 无限 Indeterminacy
15 青蚕18号Qingcan 18 意大利蚕豆资源3290 Italian faba bean resource 3290 无限 Indeterminacy
16 青蚕19号Qingcan 19 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy
17 青蚕20号Qingcan 20 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy
18 青蚕21号Qingcan 21 130×意大利资源 166 130× Italian resource 166 无限 Indeterminacy
19 青蚕22号Qingcan 22 2005-00系选Systematic selection of 2005-00 无限 Indeterminacy
20 青蚕23号Qingcan 23 马牙×戴韦 Maya×Divine 无限 Indeterminacy
21 青蚕24号Qingcan 24 云122系选 Systematic selection of Yun 122 无限 Indeterminacy
22 青蚕25号Qingcan 25 马牙×戴韦 Maya×Divine 无限 Indeterminacy
23 青蚕26号Qingcan 26 无限 Indeterminacy
24 青蚕27号Qingcan 27 意大利资源 166 Italy resource 166 无限 Indeterminacy
25 青蚕28号Qingcan 28 意大利资源 166 Italy resource 166 无限 Indeterminacy
26 青蚕32号Qingcan 32 Y4系选 Systematic selection of Y4 有限 Determaincy
27 青蚕33号Qingcan 33 Y4×GF22 有限 Determaincy
28 RF12 2008F34黑有-7-1-16 2008F34 Heiyou-7-1-16 亚有限 Semi-determinacy
29 RF15 2008F34黑有-7-2-5 2008F34 Heiyou-7-2-5 亚有限 Semi-determinacy
30 RF22 2008F34黑有-7-4-11 2008F34 Heiyou-7-4-11 亚有限 Semi-determinacy
31 羊眼豆Yangyandou 甘肃农家种 Landrace of Gansu province 无限 Indeterminacy
32 沙珠玉紫蚕豆
Shazhuyu purple faba bean
农家种 Landrace 无限 Indeterminacy
33 RF19 2008F34黑有-7-3-7-1 2008F34 Heiyou-7-3-7-1 亚有限 Semi-determinacy
34 R4061 云122-3×2005-00 Yun 122-3×2005-00 无限 Indeterminacy
35 R4053 云122-3×2005-00 Yun 122-3×2005-00 无限 Indeterminacy
36 GF22 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy

表2

SSR位点多态性信息及鉴定概率"

标记
Marker
位点数
Number of
alleles (Na)
主要位点
频率
Major allele frequency (MAF)
有效
位点数
Number of
effective
alleles (Ne)
Shannon’s
指数
Shannon’s
diversity index (I)
Nei’s遗传
多样性指数Nei’s gene diversity
多态信息
含量
Polymorphism
information
content (PIC)
位点上的
同一性概率
PI
相邻位点上的同一性概率
PIsibs
4-37 6.000 0.529 2.558 1.180 0.609 0.546 0.216 0.500
3-54 3.000 0.618 2.181 0.920 0.542 0.480 0.271 0.547
6-118 2.000 0.600 1.923 0.673 0.480 0.365 0.386 0.606
1L-20 3.000 0.528 2.374 0.949 0.579 0.496 0.260 0.526
3-51 4.000 0.571 2.445 1.080 0.591 0.535 0.223 0.510
4-119 6.000 0.429 3.393 1.413 0.705 0.659 0.133 0.431
6-55 2.000 0.917 1.180 0.287 0.153 0.141 0.730 0.856
1S-113 6.000 0.457 3.165 1.360 0.684 0.635 0.149 0.445
2-28 4.000 0.486 2.360 0.979 0.576 0.486 0.270 0.529
1L-51 6.000 0.778 1.620 0.862 0.383 0.368 0.396 0.658
2-63 4.000 0.833 1.412 0.595 0.292 0.272 0.521 0.734
1L-73 7.000 0.412 4.014 1.609 0.751 0.719 0.094 0.398
1L-90 2.000 0.583 1.946 0.679 0.486 0.368 0.382 0.603
1S-68 3.000 0.771 1.610 0.696 0.379 0.347 0.417 0.665
1S-109 2.000 0.611 1.906 0.668 0.475 0.362 0.388 0.609
5-09 3.000 0.600 2.005 0.776 0.501 0.401 0.349 0.587
2-36 3.000 0.543 2.416 0.973 0.586 0.512 0.246 0.518
1L-15 6.000 0.361 3.904 1.496 0.744 0.702 0.107 0.405
6-14 13.000 0.278 7.200 2.251 0.861 0.849 0.032 0.327
4-42 7.000 0.457 2.981 1.357 0.664 0.609 0.168 0.460
1S-26 5.000 0.486 2.612 1.132 0.617 0.545 0.218 0.496
2-01 4.000 0.472 2.711 1.127 0.631 0.562 0.205 0.486
3-40 3.000 0.486 2.536 0.997 0.606 0.525 0.236 0.506
3-23 2.000 0.667 1.800 0.637 0.444 0.346 0.407 0.630
3-39 2.000 0.694 1.737 0.615 0.424 0.334 0.421 0.643
3-22 4.000 0.400 2.855 1.137 0.650 0.579 0.193 0.473
6-21 9.000 0.361 4.909 1.853 0.796 0.773 0.064 0.368
6-24 7.000 0.444 2.972 1.348 0.664 0.606 0.170 0.461
6-62 8.000 0.500 3.322 1.574 0.699 0.672 0.118 0.430
3-61 8.000 0.389 4.408 1.734 0.773 0.746 0.078 0.383
2-106 11.000 0.429 3.990 1.776 0.749 0.722 0.090 0.398
2-103 15.000 0.194 9.257 2.444 0.892 0.883 0.021 0.309
3-52 9.000 0.371 4.268 1.729 0.766 0.735 0.086 0.389
3-94 6.000 0.486 3.249 1.426 0.692 0.655 0.132 0.437
4-100 8.000 0.429 4.016 1.677 0.751 0.724 0.089 0.397
4-63 12.000 0.500 3.429 1.748 0.708 0.687 0.107 0.423
3-122 3.000 0.800 1.514 0.637 0.340 0.313 0.463 0.696
3-65 6.000 0.559 2.627 1.254 0.619 0.575 0.189 0.488
6-47 4.000 0.444 2.602 1.069 0.616 0.537 0.226 0.499
6-58 3.000 0.559 2.165 0.859 0.538 0.444 0.308 0.558
5-112 13.000 0.417 4.469 1.964 0.776 0.757 0.069 0.379
5-87 5.000 0.514 2.753 1.213 0.637 0.582 0.187 0.478
5-64 6.000 0.667 2.098 1.108 0.523 0.494 0.256 0.552
6-113 7.000 0.472 3.447 1.521 0.710 0.677 0.117 0.424
6-112 6.000 0.571 2.485 1.184 0.598 0.547 0.213 0.504
3-81 4.000 0.514 2.601 1.085 0.616 0.548 0.216 0.496
平均Mean 5.696 0.526 2.988 1.210 0.606 0.553 0.231 0.505

图1

基于SSR标记的36份青海蚕豆品种/品系的NJ聚类"

图2

36份供试材料的群体结构与主坐标 A: K值与ΔK值折线图; B: 36份材料的群体结构, Q1 > 0.6为Subpop I, Q2 > 0.6为Subpop II; C: 主坐标分析(PCoA)。正方形为图B Subpop I, 三角形为Subpop II, 不同颜色对应图1不同类群。"

图3

相邻标记组合对36份材料的指纹鉴定能力评价"

表3

标记扩增片段及编码"

引物 Primer 序列
Sequence (5°-3°)
简称Abbreviation 编码 Code (bp)
0 1 2 3 4 5 6 7
6-21 F: GGCTGTTGCAATCAACTGG
R: CGACCAGCTCCATCCTACAT
M1 136 292 301 306
3-52 F: TCACCCCCACTATTCTCACTG
R: CCGCCCTCACTTTCAGTCTA
M2 253 267 272 278 290 295 306
1L-15 F: CGAGACTCGCGTCATTTGTA
R: CATGGCGATCAAGTTCAGTG
M3 255 259 266 270
6-113 F: TTCTGCTTGAGGAAGCACCT
R: CGGATCTTGTGGGTTGAAAG
M4 267 274 284 292

图4

36份材料的指纹图谱"

表4

36份材料的指纹信息及二维码"

编号Number 材料名称
Material name
指纹编码
Fingerprint
coding
二维码
QR code
编号Number 材料名称
Material name
指纹编码
Fingerprint
coding
二维码
QR code
1 青海1号
Qinghai 1
23041313 19 青蚕22号
Qingcan 22
02020303
2 青海2号
Qinghai 2
03040303 20 青蚕23号
Qingcan 23
03040101
3 青海3号
Qinghai 3
24042403 21 青蚕24号
Qingcan 24
03030203
4 青海4号
Qinghai 4
24042302 22 青蚕25号
Qingcan 25
03030214
5 青海5号
Qinghai 5
04040203 23 青蚕26号
Qingcan 26
02040202
6 青海8号
Qinghai 8
14030313 24 青蚕27号
Qingcan 27
04060303
7 青海6号
Qinghai 6
03031313 25 青蚕28号
Qingcan 28
13051303
8 青海11号
Qinghai 11
03040103 26 青蚕32号
Qingcan 32
03460203
9 青海12号
Qinghai 12
23041313 27 青蚕33号
Qingcan 33
03450303
10 青海13号
Qinghai 13
04040123 28 RF12 03451203
11 青蚕14号
Qingcan 14
12040204 29 RF15 03040301
12 青蚕15号
Qingcan 15
04461304 30 RF22 03030301
13 青蚕16号
Qingcan 16
02040103 31 羊眼豆
Yangyandou
04020101
14 青蚕17号
Qingcan 17
03020303 32 沙珠玉紫蚕豆
Shazhuyu purple faba bean
01020201
15 青蚕18号
Qingcan 18
03010201 33 RF19 02030201
16 青蚕19号
Qingcan 19
02020302 34 R4061 03030303
17 青蚕20号
Qingcan 20
14070203 35 R4053 12030103
18 青蚕21号
Qingcan 21
04000303 36 GF22 03451203
[1] Jensen E S, Peoples M, Hauggaard-Nielsen H. Faba bean in cropping systems. Field Crops Res, 2010, 115: 203-216.
[2] Köpke U, Nemecek T. Ecological services of faba bean. Field Crops Res, 2010, 115: 217-233.
[3] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
[4] Bishop J, Jones H E, Lukac M, Potts S G. Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agric Ecosyst Environ, 2016, 220: 89-96.
[5] FAO. Statistical Database, Food and Agriculture Organization (FAO) of the United Nations, Rome. http://faostat.fao.org/, 2021.
[6] 刘玉皎. 调结构, 转方式, 促进青海蚕豆产业转型升级. 青海科技, 2018, 25(1): 35-37.
Liu Y J. Adjusting structure and mode to promote the transformation and upgrading of faba bean industry in Qinghai. Qinghai Sci Technol, 2018, 25(1): 35-37 (in Chinese).
[7] 刘玉皎, 张红岩, 郭兴莲, 周仙莉. 基于“一优两高”战略的蚕豆产业认知与产业发展. 青海科技, 2020, 27(6): 18-21.
Liu Y J, Zhang H Y, Guo X L, Zhou X L. Cognition and industrial development of faba bean industry based on the “One excellence and two highs” strategy. Qinghai Sci Technol, 2020, 27(6): 18-21 (in Chinese).
[8] 张红岩. 基于SSR标记的蚕豆DNA指纹图谱构建及品种纯度鉴定. 中国农业科学院硕士学位论文, 北京, 2018.
Zhang H Y. Construction of DNA Fingerprint and Variety Purity Identification of Faba Bean Based on SSR Markers. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[9] 聂兴华, 刘松, 王碧瑶, 李琰, 练蔓青, 秦岭, 郑瑞杰, 邢宇. 基于SSR标记的我国主栽日本栗品种(系)遗传结构分析和指纹图谱构建. 核农学报, 2022, 36: 2104-2114.
Nie X H, Liu S, Wang B Y, Li Y, Lian M Q, Qin L, Zheng R J, Xing Y. Genetic structure analysis and fingerprinting construction of the main Japanese chestnut cultivars (lines) using SSR markers in China. J Nucl Agric Sci, 2022, 36: 2104-2114 (in Chinese with English abstract).
[10] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析. 作物学报, 2022, 48: 2786-2805.
Liu Y L, Zhang H Y, Teng C C, Zhou X L, Hou W W. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.). Acta Agron Sin, 2022, 48: 2786-2805 (in Chinese with English abstract).
[11] 张红岩, 郭兴莲, 杨涛, 刘荣, 黄宇宁, 季一山, 王栋, 宗绪晓. 利用SSR标记分析蚕豆品种(品系)与优异种质的遗传多样性. 中国蔬菜, 2018, (2): 34-41.
Zhang H Y, Guo X L, Yang T, Liu R, Huang Y N, Ji Y S, Wang D, Zong X X. Genetic diversity of faba bean varieties (lines) and elite collections by SSR markers. China Veg, 2018, (2): 34-41 (in Chinese with English abstract).
[12] Ma Y, Bao S Y, Yang T, Hu J G, Guan J P, He Y H, Wang X J, Wan Y L, Sun X L, Jiang J Y, Gong C X, Zong X X. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed, 2013, 132: 397-400.
[13] Yang T, Jiang J Y, Zhang H Y, Liu R, Strelkov S, Hwang S F, Chang K F, Yang F, Miao Y M, He Y H, Zong X X. Density enhancement of a faba bean genetic linkage map (Vicia faba) based on simple sequence repeats markers. Plant Breed, 2019, 138: 207-215.
[14] 周仙莉, 滕长才, 张红岩, 韩雪梅, 林夕, 刘玉玲, 吴小燕, 侯万伟, 刘玉皎. 蚕豆亚有限生长习性遗传规律分析及其基因初步定位. 分子植物育种, 2021, 19: 2660-2667.
Zhou X L, Teng C C, Zhang H Y, Han X M, Lin X, Liu Y L, Wu X Y, Hou W W, Liu Y J. Genetic analysis and primary mapping of the semi-determinate growth habit genes in faba bean. Mol Plant Breed, 2021, 19: 2660-2667 (in Chinese with English abstract).
[15] 刘金洋, 周琰琰, 林云, 刘萌萌, 薛晨晨, 陈景斌, 闫强, 吴然然, 陈新, 袁星星. 南方90份秋播区蚕豆粒型性状的SSR关联分析. 植物遗传资源学报, 2023, 24: 1602-1618.
Liu J Y, Zhou Y Y, Lin Y, Liu M M, Xue C C, Chen J B, Yan Q, Wu R R, Chen X, Yuan X X. Associate studies of seed size-related traits with SSR markers of 90 faba beans in south autumn sowing areas. J Plant Genet Resour, 2023, 24: 1602-1618 (in Chinese with English abstract).
[16] Požárková D, Koblížková A, Román B, Torres A M, Lucretti S, Lysák M, Doležel J, Macas J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant, 2002, 45: 337-345.
[17] Suresh S, Park J H, Cho G T, Lee H S, Baek H J, Lee S Y, Chung J W. Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules, 2013, 18: 1844-1856.
[18] Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T, Kresovich S. Simple sequence repeats (SSRs) in faba bean: new loci from Orobanche-resistant cultivar ‘Giza 402’. Plant Breed, 2009, 128: 149-155.
[19] Jayakodi M, Golicz A A, Kreplak J, Fechete L I, Angra D, Bednář P, Bornhofen E, Zhang H L, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen T W, Neumann P, Nadzieja M, Nielsen L K, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo L Á, Schiemann A, Tanskanen J, Törönen P, Warsame A O, Wittenberg A H J, Himmelbach A, Aubert G, Courty P E, Doležel J, Holm L U, Janss L L, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon R J, Stein N, Stoddard F L, Stougaard J, Tayeh N, Torres A M, Usadel B, Schubert I, O’Sullivan D M, Schulman A H, Andersen S U. The giant diploid faba genome unlocks variation in a global protein crop. Nature, 2023, 615: 652-659.
[20] 宋伟, 王凤格, 田红丽, 易红梅, 王璐, 赵久然. 利用核心SNP位点鉴别玉米自交系的研究. 玉米科学, 2013, 21(4): 28-32.
Song W, Wang F G, Tian H L, Yi H M, Wang L, Zhao J R. Identification of maize inbred lines using core SNP loci. J Maize Sci, 2013, 21(4): 28-32 (in Chinese with English abstract).
[21] 乔东亚, 王鹏, 王淑安, 李林芳, 高露璐, 杨如同, 汪庆, 李亚. 基于SNP标记的紫薇遗传多样性分析. 南京林业大学学报(自然科学版), 2020, 44(4): 21-28.
Qiao D Y, Wang P, Wang S A, Li L F, Gao L L, Yang R T, Wang Q, Li Y. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers. J Nanjing For Univ (Nat Sci Edn), 2020, 44(4): 21-28 (in Chinese with English abstract).
[22] 孙虎, 刘昌燕, 李莉, 刘良军, 韩雪松, 万正煌, 沙爱华, 陈宏伟. 80份绿豆象抗感蚕豆种质资源SSR遗传多样性分析. 西南农业学报, 2023, 36: 683-691.
Sun H, Liu C Y, Li L, Liu L J, Han X S, Wan Z H, Sha A H, Chen H W. Genetic diversity of SSR markers in 80 faba bean germplasm resources susceptible to mung bean weevil. Southwest China J Agric Sci, 2023, 36: 683-691 (in Chinese with English abstract).
[23] 孙泽硕, 蒋冬月, 柳新红, 沈鑫, 李因刚, 屈雨飞, 李永华. 基于SSR标记的42份樱花品种的聚类分析及DNA指纹图谱构建. 园艺学报, 2023, 50: 657-668.
Sun Z S, Jiang D Y, Liu X H, Shen X, Li Y G, Qu Y F, Li Y H. Cluster analysis and construction of DNA fingerprinting of 42 oriental cultivars of flowering cherry based on SSR markers. Acta Hortic Sin, 2023, 50: 657-668 (in Chinese with English abstract).
[24] 李超, 杨英, 陈伟, 郑贺云, 廖新福, 孙玉萍. 西州密系列甜瓜SSR指纹图谱构建及聚类分析. 园艺学报, 2022, 49: 622-632.
Li C, Yang Y, Chen W, Zheng H Y, Liao X F, Sun Y P. Construction of DNA fingerprinting and clustering analysis with SSR markers for the muskmelon of Xizhoumi series. Acta Hortic Sin, 2022, 49: 622-632 (in Chinese with English abstract).
[25] 胡春龙. 基于SSR标记构建白蜡种质资源分子身份证及其遗传多样性分析. 山东农业大学硕士学位论文, 山东泰安, 2015.
Hu C L. Establishment of Molecular ID for Fraxinus Based on SSR Markers and Analysis of Genetic Diversity. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract).
[26] 刘秀菊, 任俊云, 宗绪晓, 关建平, 张晓艳. 蚕豆AFLP技术体系的建立与优化. 植物遗传资源学报, 2007, 8: 153-158.
Liu X J, Ren J Y, Zong X X, Guan J P, Zhang X Y. Establishment and optimization of AFLP for faba bean. J Plant Genet Resour, 2007, 8: 153-158 (in Chinese with English abstract).
[27] 杨菁, 刘玉皎. 青海主要蚕豆品种AFLP指纹图谱构建. 2008年中国作物学会学术年会论文摘要集, 2008.
Yang J, Liu Y J. Construction of AFLP fingerprint of main faba bean varieties in Qinghai province. Abstracts of 2008 Annual Academic Meeting of Crop Science Society of China, 2008.
[28] Waly E A, Farghali M A, Abbas H S, Mosselhy D S. Identification of the genetic differences between some faba bean genotypes by finger print characters. J Appl Sci Res, 2012, 8: 17-24.
[29] 侯万伟, 刘玉皎, 李萍, 张小田. 12个蚕豆品种RAPD指纹图谱的构建. 江苏农业科学, 2011, 39(3): 48-50.
Hou W W, Liu Y J, Li P, Zhang X T. Construction of RAPD fingerprints of 12 faba bean varieties. Jiangsu Agric Sci, 2011, 39(3): 48-50 (in Chinese).
[30] Waits L P, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol, 2001, 10: 249-256.
[1] 匡博文, 韦妳, 刘金典, 陈美燕, 毛兴洁, 段维兴, 杨细平. 基于甘蔗及其近缘属参考基因组开发SSR标记及数据库[J]. 作物学报, 2025, 51(1): 103-116.
[2] 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278.
[3] 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000.
[4] 范惠玲, 白生文, 路妍, 彭小星, 周仙莉, 张红岩, 滕长才, 武学霞, 刘玉皎. 155份蚕豆种质资源全生育期耐盐碱性鉴定与综合评价[J]. 作物学报, 2024, 50(12): 3035-3045.
[5] 陈志凯, 周仙莉, 张红岩, 滕长才, 侯万伟. 320份蚕豆蛋白质含量的SSR关联分析[J]. 作物学报, 2024, 50(11): 2775-2786.
[6] 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482.
[7] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[8] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[9] 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697.
[10] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[11] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析[J]. 作物学报, 2022, 48(12): 2994-3003.
[12] 牟文燕, 褚宏欣, 黄宁, 张露露, 张学美, 郭子糠, 黄翠, 孙利谦, 魏蕾, 罗一诺, 王朝辉, 刘金山. 中国主要麦区小麦品种(系)产量与需硫特征关系分析[J]. 作物学报, 2022, 48(12): 3192-3202.
[13] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析[J]. 作物学报, 2022, 48(11): 2786-2796.
[14] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[15] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
Viewed
Full text
3799
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 55 0 3734

  From Others local
  Times 31 3768
  Rate 1% 99%

Abstract
208
Just accepted Online first Issue
32 0 176
  From local
  Times 208
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .