欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2775-2786.doi: 10.3724/SP.J.1006.2024.44013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

320份蚕豆蛋白质含量的SSR关联分析

陈志凯1(), 周仙莉1, 张红岩1, 滕长才1,2, 侯万伟1,2,3,*()   

  1. 1青海大学, 青海西宁 810016
    2青海省农林科学院, 青海西宁 810016
    3国家农作物种质资源复份库, 青海西宁 810016
  • 收稿日期:2024-01-18 接受日期:2024-05-21 出版日期:2024-11-12 网络出版日期:2024-06-18
  • 通讯作者: *侯万伟, E-mail: houwanwei333@163.com
  • 作者简介:E-mail: 1654061871@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-G06);青海省高端人才千人计划项目

SSR association analysis of the protein content of 320 faba bean germplasms

CHEN Zhi-Kai1(), ZHOU Xian-Li1, ZHANG Hong-Yan1, TENG Chang-Cai1,2, HOU Wan-Wei1,2,3,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    3National Crop Germplasm Resources Duplicate, Xining 810016, Qinghai, China
  • Received:2024-01-18 Accepted:2024-05-21 Published:2024-11-12 Published online:2024-06-18
  • Contact: *E-mail: houwanwei333@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-08-G06);Qinghai Provincial High-end Talent Thousand Program

摘要:

蚕豆是重要的植物蛋白源作物, 富含8种必须氨基酸且含量均衡, 挖掘蚕豆蛋白质相关基因不仅有利于优质蛋白蚕豆品种选育, 而且对于未来植物蛋白的需求具有重要意义。本研究以320份蚕豆种质资源为材料, 测定了1年3个点(青海西宁市、互助县、湟源县)的蛋白质含量, 并用筛选的132对SSR引物进行了蚕豆蛋白质含量关联分析。结果表明,蛋白质含量范围在19.51%~54.34%, 3个地点的变异系数分别为10.835、20.865、13.380, 均符合正态分布, 具有表型多样性。132个标记在320份材料中共检测到778个多态性位点, 平均等位基因数为6, 变幅为3~12, 多态性信息量(PIC)的变幅为0.1527 (V1797)~0.8225 (SSR-12192), 平均值为0.5583, PIC值大于平均值的标记占总数的49.24%, 选用的标记基因遗传多样性较高; 遗传结构分析将320份材料分成2个亚群, 其中亚群I有176份材料, 亚群II有107份材料, 其余37份没有明显的群类归属特性, 为混合类群, 供试群体结构较为单一; 利用GLM和MLM 2种关联分析模型共检测到与蛋白质含量显著相关的22个SSR标记, 有3个SSR标记与蛋白质含量极显著相关(SSR-10894、SSR-12695、V1929), 在多个环境中均检测到SSR-13584, 解释率范围在4.07%~5.19%, V1929在湟源县的2种模型关联分析中均极显著相关, 解释率分别为10.00%、9.20%。该研究结果可为亲本选配及蚕豆蛋白相关基因挖掘及品质育种提供理论基础。

关键词: 蚕豆, 蛋白质含量, SSR标记, 关联分析

Abstract:

Faba bean (Vicia faba L.) is an important crop known for its high protein content, which includes all eight essential amino acids in a balanced manner. Mining protein-related genes in faba bean not only contributes to the breeding of high-quality protein varieties but also holds great significance for meeting the future demand of plant protein. In this study, a total of 320 faba bean germplasms were evaluated for protein content across three environments (Xining, Huzhu, and Huangyuan in Qinghai province) over one year. Additionally, 132 selected SSR makers were used to conduct association analysis. The results showed that the protein content ranged from 19.51% to 54.34%. The coefficients of variation for the three environments were 10.835, 20.865, and 13.380, respectively, displaying a normal distribution with phenotypic diversity. Among the 320 materials, 778 polymorphic loci were detected by the 132 markers. The average allele number was 6, with a range of 3 to 12. The polymorphism information content (PIC) varied from 0.1527 (V1797) to 0.8225 (SSR-12192), with a mean value of 0.5583. Markers with a PIC value greater than the mean accounted for 49.24% of the total markers, indicating relatively high genetic diversity among the selected markers. Genetic structure analysis showed that the 320 materials could be divided into two subgroups. Subgroup I consisted of 176 materials, subgroup II contained 107 materials, while the remaining 37 materials did not exhibit distinct group affiliation, representing a mixed taxon. Overall, the genetic diversity of the marker genes was high, and the test population displayed relatively homogeneous structure. Through GLM and MLM analyses, a total of 22 SSR markers significantly correlated with protein content were identified. Notably, three SSR markers (SSR-10894, SSR-12695, V1929) displayed a strong association with protein content in this study. Among them, SSR-13584 exhibited consistent correlation across multiple environments, with an explanatory rate ranging from 4.07% to 5.19%. V1929 showed a high correlation with protein content in Huangyuan county, with explanatory rate of 10.00% and 9.20% using both correlation analysis models. The findings of this study provide a theoretical basis for parental selection, faba bean protein-related gene mining, and quality breeding.

Key words: faba bean, protein content, SSR marker, association analysis

表1

蚕豆资源蛋白含量的统计分析"

地点
Location
最小值
Minimum value (%)
最大值
Maximum value
(%)
平均数
Average (%)
标准偏差
Standard deviation
变异系数
Coefficient of variation (%)
方差
Variance
偏度
Skewness
峰度
Kurtosis
西宁Xining 23.602 41.218 32.917 3.292 10.00 10.835 0.123 -0.163
互助Huzhu 19.157 54.348 34.599 4.568 13.20 20.865 0.142 0.630
湟源Huangyuan 24.937 47.011 34.788 3.659 10.51 13.380 0.079 0.271

图1

3个点蚕豆蛋白质含量分布图"

表2

132对SSR标记多态性统计"

标记
Marker
等位基因数
Allele number
引物多态性
PIC
标记
Marker
等位基因数
Allele number
引物多态性
PIC
SSR-1914 3 0.4606 V2704 5 0.3585
EST-475 3 0.2997 V2772 5 0.4886
SSR-11967 3 0.2496 V734 5 0.6544
V1846 3 0.3888 V3051 5 0.6373
V2949 3 0.2344 SSR-17892 5 0.3478
SSR-12526 3 0.4047 V2937 5 0.3659
V1916 3 0.4585 SSR-17611 5 0.4910
V2276 4 0.5420 SSR-12751 5 0.6884
V3027 4 0.4247 SSR-12911 5 0.3705
V2268 4 0.6244 SSR-12503 5 0.3990
V2253 4 0.4972 SSR-10832 5 0.3934
SSR-14892 4 0.5657 SSR-17506 5 0.5209
SSR-13508 4 0.5550 SSR-10927 5 0.5238
V3056 4 0.5666 SSR-17488 5 0.4527
V2979 4 0.4306 SSR-12180 5 0.5016
V2716 4 0.3119 C-3165 5 0.5332
V2733 4 0.5227 EST-657 5 0.4409
V2930 4 0.4777 V1761 5 0.4919
SSR-13844 4 0.4646 V2574 5 0.4212
SSR-11854 4 0.5819 V2073 5 0.6596
SSR-15868 4 0.3683 SSR-18329 5 0.5045
V2888 4 0.2067 FBES0135 5 0.6638
SSR-11862 4 0.4002 V1133 5 0.5655
SSR-10757 4 0.4669 V2729 5 0.6013
V1702 4 0.4414 SSR-14219 5 0.6894
FBFS0809 4 0.5123 SSR-13380 5 0.6906
V1778 4 0.4061 SSR-16885 5 0.5965
V1797 4 0.1527 V2228 5 0.4234
V1446 4 0.4099 SSR-14430 6 0.6116
SSR-10894 4 0.6049 V2109 6 0.4384
SSR-18215 4 0.3473 Y240 6 0.6954
V2103 4 0.5416 V2138 6 0.5981
V2275 5 0.4658 V2687 6 0.4160
V3035 5 0.6973 V2991 6 0.6952
V2720 6 0.5274 SSR-17507 7 0.7231
V2731 6 0.5199 SSR-11885 7 0.5577
SSR-13584 6 0.6008 SSR-12695 7 0.4231
SSR-11723 6 0.6720 V-2460 7 0.6912
SSR-13067 6 0.5097 SSR-12066 7 0.5415
SSR-16047 6 0.4274 V1929 7 0.5325
SSR-12332 6 0.5576 V2542 7 0.5381
SSR-11448 6 0.7125 C-3883 7 0.6247
SSR-11365 6 0.4309 SSR-12842 7 0.6006
SSR-11621 6 0.6427 V2280 7 0.7914
EST-868 6 0.7039 Y67 8 0.6180
V2493 6 0.5235 SSR-3581 8 0.5274
V1693 6 0.5982 V2986 8 0.6891
SSR-16592 6 0.6966 V3017 8 0.7695
V2958 6 0.5727 V3043 8 0.7295
V2653 6 0.5367 T179 8 0.6833
SSR-13593 6 0.5062 V2900 8 0.7378
EST-24 6 0.5812 SSR-11342 8 0.6871
V1836 6 0.6622 SSR-12667 8 0.5764
FBES0142 6 0.6286 V1820 8 0.6976
V2388 6 0.6539 T135 9 0.7005
V2188 7 0.5414 V2220 9 0.6832
V2285 7 0.5948 SSR-14109 9 0.6387
V3052 7 0.6625 V3012 9 0.6169
V2970 7 0.5093 SSR-12586 9 0.7243
SSR-14765 7 0.7551 V2646 9 0.7528
V2873 7 0.6993 V3031 10 0.8132
V2882 7 0.7333 V2698 10 0.6921
V2745 7 0.5539 V2015 10 0.7787
V2277 7 0.4044 V3058 11 0.7450
V3053 7 0.7675 SSR-12192 11 0.8225
SSR-14447 7 0.7575 T19 12 0.7291

图2

K值与ΔK值折线图"

图3

320份蚕豆材料的群体结构"

图4

SSR标记之间的连锁不平衡分析(LD)"

表3

蛋白质含量与SSR标记关联分析结果"

表型
Phenotype
标记
Marker
显著性
Significance
解释率
Interpretation rate
显著性
Significance
解释率
Interpretation rate
蛋白质含量(西宁)
Protein content (Xining)
EST-475 0.0443 0.0204
SSR-11967 0.0366 0.0207
V2704 0.0389 0.0370
SSR-13584 0.0463 0.0455
SSR-14447 0.0321 0.0531
V2882 0.0066 0.0537
SSR-13593 0.0219 0.0608 0.0285 0.0528
SSR-17892 0.0059 0.0455 0.0042 0.0430
V2285 0.0465 0.0319
V2882 0.0101 0.0453
蛋白质含量(互助)
Protein content (Huzhu)
EST-868 0.0489 0.0345
V3035 0.0200 0.0409 0.0296 0.0349
V2388 0.0065 0.0562 0.0120 0.0480
EST-657 0.0356 0.0411 0.0429 0.0369
SSR-13584 0.0367 0.0519 0.0462 0.0464
SSR-12192 0.0124 0.0781 0.0146 0.0712
SSR-12751 0.0086 0.0410 0.0083 0.0385
蛋白质含量(湟源)
Protein content (Huangyuan)
V2704 0.0189 0.0458 0.0221 0.0414
SSR-12180 0.0358 0.0463
V2745 0.0438 0.0493
SSR-13584 0.0413 0.0504
EST-657 0.0057 0.0555 0.0064 0.0509
SSR-10894 0.0036 0.0534 0.0039 0.0493
SSR-11448 0.0230 0.0570 0.0284 0.0513
V2073 0.0200 0.0624 0.0333 0.0537
V2493 0.0104 0.0632 0.0181 0.0542
SSR-11885 0.0414 0.0694 0.0469 0.0633
SSR-12695 0.0042 0.0717 0.0035 0.0684
V1929 0.0001 0.1000 0.0001 0.0920
SSR-12586 0.0023 0.1164 0.0011 0.1108
V1846 0.0023 0.0416 0.0025 0.0385
SSR-1914 0.0422 0.0151 0.0492 0.0131
SSR-12751 0.0491 0.0275
V734 0.0486 0.0279
V2574 0.0350 0.0304 0.0344 0.0285
V2772 0.0183 0.0404 0.0183 0.0377
T19 0.0471 0.0611
[1] 王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析. 作物学报, 2011, 37: 595-602.
doi: 10.3724/SP.J.1006.2011.00595
Wang H F, Guan J P, Ma Y, Sun X L, Zong X X. Genetic diversity analysis of ISSR markers in Chinese faba bean germplasm resources. Acta Agron Sin, 2011, 37: 595-602 (in Chinese with English abstract).
[2] 李程勋, 徐晓俞, 郑开斌, 李爱萍. 蚕豆发芽过程中蛋白质和抗氧化能力的变化. 核农学报, 2022, 36: 2190-2198.
doi: 10.11869/j.issn.100-8551.2022.11.2190
Li C X, Xu X Y, Zheng K B, Li A P. Changes in protein and antioxidant capacity during germination of fava bean. J Nucl Agric Sci, 2022, 36: 2190-2198 (in Chinese with English abstract).
[3] 宋晓敏, 李素芬, 刘建福, 谭斌, 刘明. 20种蚕豆样品蛋白质含量与其蛋白组分的分子质量. 中国粮油学报, 2013, 28(12): 42-46.
Song X M, Li S F, Liu J F, Tan B, Liu M. Protein content of 20 faba bean samples and molecular mass of their protein fractions. J Chin Cereals Oils Assoc, 2013, 28(12): 42-46 (in Chinese with English abstract).
[4] 郑敏, 欧阳满, 黄强. 蚕豆蛋白质的营养价值及利用分析. 现代食品, 2017, 10(20): 26-27.
Zheng M, Ou-Yang M, Huang Q. Nutritional value and utilization analysis of broad bean protein. Modern Food, 2017, 10(20): 26-27 (in Chinese with English abstract).
[5] 林宝妹, 邱珊莲, 郑开斌. 2种干燥方式下蚕豆氨基酸品质的比较分析. 福建农业科技, 2021, 52(6): 52-57.
Lin B M, Qiu S L, Zheng K B. Comparative analysis of amino acid quality of faba bean under two drying methods. Fujian Agric Sci Technol, 2021, 52(6): 52-57 (in Chinese with English abstract).
[6] 张腾飞.利用连锁与关联分析定位大豆蛋白质与油分含量QTL. 中国农业科学院硕士学位论文, 北京, 2020.
Zhang T F. Localization of QTL for Protein and Oil Content in Soybean using Chain and Association Analysis. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract).
[7] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘. 作物学报, 2024, 50: 310-324.
doi: 10.3724/SP.J.1006.2023.34066
Tian C Y, Bian X, Lang R B, Yu H X, Tao L A, An R D, Dong L H, Zhang Y, Jing Y F. Association analysis of three sugarcane breeding traits with SSR markers and discovery of superior allelic variants. Acta Agron Sin, 2024, 50: 310-324 (in Chinese with English abstract).
[8] 杨豪, 向仕华, 刘丽, 宁可君, 杨雪, 舒英杰, 何庆元. 川渝大豆生育期性状的全基因组关联分析. 作物学报, 2023, 49: 2727-2742.
Yang H, Xiang S H, Liu L, Ning K J, Yang X, Shu Y J, He Q Y. Genome-wide association analysis of soybean fertility traits in Sichuan and Chongqing. Acta Agron Sin, 2023, 49: 2727-2742 (in Chinese with English abstract).
[9] 李晓瑜, 方小梅, 伍浩天, 王莹倩, 刘洋, 唐恬, 王于栋, 吴银环, 岳林清, 张瑞丰, 崔静斌, 张建, 易泽林. 苦荞种质资源主要农艺性状SSR标记关联分析. 作物学报, 2022, 48: 3091-3107.
doi: 10.3724/SP.J.1006.2022.11113
Li X Y, Fang X M, Wu H T, Wang Y Q, Liu Y, Tang T, Wang Y D, Wu Y H, Yue L Q, Zhang R F, Cui J B, Zhang J, Yi Z L. Association analysis of SSR markers for major agronomic traits in buckwheat germplasm resources. Acta Agron Sin, 2022, 48: 3091-3107 (in Chinese with English abstract).
[10] Yang T, Jiang J Y, Zhang H Y, Liu R, Strelkov S, Hwang S F, Chang K F, Yang F, Miao Y M, He Y H, Zong X X. Density enhancement of a faba bean genetic linkage map (Vicia faba) based on simple sequence repeats markers. Plant Breed, 2019, 138: 207-215.
[11] Yang T, Bao S Y, Ford R, Jia T J, Guan J P, He Y H, Sun X L, Jiang J Y, Hao J J, Zhang X Y, Zong X X. High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics, 2012, 13: 602.
doi: 10.1186/1471-2164-13-602 pmid: 23137291
[12] Ma Y C, Bao S Y, Yang T, Hu J G, Guan J P, Hu Y H, Wang X J, Wan Y C, Sun X L, Jiang J Y, Gong C X, Zong X X, Wolfgang L. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed, 2013, 132: 397-400.
[13] 王秀军, 赵彦贝, 王静, 李子航, 张纪堂, 李庆卫. 基于SSR分子标记的175份蜡梅种质遗传多样性分析和指纹图谱构建. 生物工程学报, 2024, 40: 252-268.
Wang X J, Zhao Y B, Wang J, Li Z H, Zhang J T, Li Q W. Genetic diversity analysis and fingerprinting of 175 waxberry germplasm based on SSR molecular markers. Chin J Biotechnol, 2024, 40: 252-268 (in Chinese with English abstract).
[14] 单红丽, 李文凤, 黄应昆, 王晓燕, 张荣跃, 李婕, 尹炯, 仓晓燕. 甘蔗抗褐锈病基因定位亲本间多态性SSR标记筛选. 核农学报, 2019, 33: 2119-2125.
doi: 10.11869/j.issn.100-8551.2019.11.2119
Shan H L, Li W F, Huang Y K, Wang X Y, Zhang R Y, Li J, Yin J, Cang X Y. Screening of polymorphic SSR markers among parents for gene localization of brown rust resistance in sugarcane. J Nucl Agric Sci, 2019, 33: 2119-2125 (in Chinese with English abstract).
[15] 刘金洋, 周琰琰, 林云, 刘萌萌, 薛晨晨, 陈景斌, 闫强, 吴然然, 陈新, 袁星星. 南方90份秋播区蚕豆粒型性状的SSR关联分析. 植物遗传资源学报, 2023, 24: 1602-1618.
doi: 10.13430/j.cnki.jpgr.20230519001
Liu J Y, Zhou Y Y, Lin Y, Liu M M, Xue C C, Chen J B, Yan Q, Wu R R, Chen X, Yuan X X. SSR association analysis of grain size traits in faba bean in 90 autumn sowing areas in South China. J Plant Genet Resour, 2023, 24: 1602-1618 (in Chinese with English abstract).
[16] 刘玉玲, 张红岩, 韩雪梅, 周仙莉, 侯万伟. 蚕豆农艺性状的SSR标记关联分析. 西南农业学报, 2022, 35: 503-516.
Liu Y L, Zhang H Y, Han X M, Zhou X L, Hou W W. Association analysis of SSR markers for agronomic traits in faba bean. Southwest China J Agric Sci, 2022, 35: 503-516 (in Chinese with English abstract).
[17] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析. 作物学报, 2022, 48: 2786-2805.
doi: 10.3724/SP.J.1006.2022.14190
Liu Y L, Zhang H Y, Teng C C, Zhou X L, Hou W W. Genetic diversity and association analysis of SSR markers with starch content in faba bean. Acta Agron Sin, 2022, 48: 2786-2805 (in Chinese with English abstract).
[18] Jayakodi M, Golicz A A, Kreplak J, Fechete L I, Angra D, Bednář P, Bornhofen E, Zhang H, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen T W, Neumann P, Nadzieja M, Nielsen L K, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo L Á, Schiemann A, Tanskanen J, Törönen P, Warsame A O, Wittenberg A H J, Himmelbach A, Aubert G, Courty P E, Doležel J, Holm L U, Janss L L, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon R J, Stein N, Stoddard F L, Stougaard J, Tayeh N, Torres A M, Usadel B, Schubert I, O’Sullivan D M, Schulman A H, Andersen S U. The giant diploid faba genome unlocks variation in a global protein crop. Nature, 2023, 615: 652-659.
[19] 段金涛. 大豆蛋白质含量及组分的全基因组关联分析. 四川农业大学硕士学位论文, 四川成都, 2022.
Duan J T. Genome-wide Association Analysis of Soybean Protein Content and Fractions. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2022 (in Chinese with English abstract).
[20] 胡盛, 李阳阳, 唐章林, 李加纳, 曲存民, 刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析. 中国农业科学, 2023, 56: 17-35.
doi: 10.3864/j.issn.0578-1752.2023.01.002
Hu S, Li Y Y, Tang Z L, Li J N, Qu C M, Liu L Z. Genome-wide association analysis of changes in oil and protein contents of kale-type rapeseed grains under drought stress. Sci Agric Sin, 2023, 56: 17-35 (in Chinese with English abstract).
[21] 沈甲诚, 张小利, 黄建丽, 邓肃霜, 郭娜, 赵晋铭, 邢邯. 大豆水溶性蛋白质的全基因组关联分析. 大豆科学, 2020, 39: 509-517.
Shen J C, Zhang X L, Huang J L, Deng S S, Guo N, Zhao J M, Xing H. Genome-wide association analysis of soybean water- soluble proteins. Soybean Sci, 2020, 39: 509-517 (in Chinese with English abstract).
[22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.粮油检验粮食及制品中粗蛋白测定杜马斯燃烧法: GB/T 31578-2015. 北京: 中国标准出版社, 2015
State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People’s Republic of China. Grain and oil inspection Dumas combustion method for the determination of crude protein in grain and products: GB/T 31578-2015. Beijing: Standards Press of China, 2015 (in Chinese).
[23] 田承华, 程庆军, 高海燕, 高鹏, 张俊珍, 郭睿, 贺文文. 高粱种质资源SSR标记遗传多样性与农艺性状关联分析. 安徽农业科学, 2018, 46(32): 26-32.
Tian C H, Cheng Q J, Gao H Y, Gao P, Zhang J Z, Guo R, He W W. Analysis of genetic diversity of SSR markers associated with agronomic traits in sorghum germplasm resources. J Anhui Agric Sci, 2018, 46(32): 26-32 (in Chinese with English abstract).
[24] 林峰, 赵慧艳, 史飞飞, 高鹏, 刘晨煦, 岳阳, 金昕, 张意德, 李永光, 韩英鹏, 赵雪, 滕卫丽. 大豆种质资源苗期耐盐鉴定及遗传多样性分析. 植物遗传资源学报, 网络首发[2024-01-10], https://doi.org/10.13430/j.cnki.jpgr.20231128003.
Lin F, Zhao H Y, Shi F F, Gao P, Liu C X, Yue Y, Jin X, Zhang Y D, Li Y G, Han Y P, Zhao X, Teng W L. Identification of seedling salt tolerance and genetic diversity analysis of soybean germplasm resources. J Plant Genet Resour, Published online [2024-01-10], https://doi.org/10.13430/j.cnki.jpgr.20231128003 (in Chinese with English abstract).
[25] 江姚兰, 陈冠龙, 李涛, 孙保娟, 李植良, 游倩. 茄子种质资源表型遗传多样性分析及综合评价. 分子植物育种, 2024, 22: 1543-1558.
Jiang Y L, Chen G L, Li T, Sun B J, Li Z L, You Q. Phenotypic genetic diversity analysis and comprehensive evaluation of eggplant germplasm resources. Mol Plant Breed, 2024, 22: 1543-1558 (in Chinese with English abstract).
[26] 刘周杰, 刘烨, 刘春颖, 张泱, 刘拴成, 穆俊祥. 15个燕麦品种(系)表型及农艺性状遗传多样性分析与评价. 农业科技通讯, 2023, (12): 45-49.
Liu Z J, Liu Y, Liu C Y, Zhang Y, Liu S C, Mu J X. Analysis and evaluation of genetic diversity of phenotypic and agronomic traits in 15 oat varieties (lines). Bull Agric Sci Technol, 2023, (12): 45-49 (in Chinese with English abstract).
[27] 唐芬, 赵路宽, 苏一钧, 肖世卓, 袁蕊, 翁宗宽, 戴习彬, 陈艳丽, 周志林, 曹清河. 基于InDel标记分析305份中国甘薯登记品种遗传多样性. 植物遗传资源学报, 2024, 25: 576-585.
doi: 10.13430/j.cnki.jpgr.20230928002
Tang F, Zhao L K, Su Y J, Xiao S Z, Yuan R, Weng Z K, Dai X B, Chen Y L, Zhou Z L, Cao Q H. Genetic diversity of 305 Chinese sweetpotato registered varieties analyzed based on InDel markers. J Plant Genet Resour, 2024, 25: 576-585 (in Chinese with English abstract).
[28] 王恬.新麦草分蘖相关性状的SSR分子标记关联分析. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.
Wang T. Association Analysis of SSR Molecular Markers for Tillering-related Traits in New Wheatgrass. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).
[29] 张红岩, 郭兴莲, 杨涛, 刘荣, 黄宇宁, 季一山, 王栋, 宗绪晓. 利用SSR标记分析蚕豆品种(品系)与优异种质的遗传多样性. 中国蔬菜, 2018, (2): 34-41.
Zhang H Y, Guo X L, Yang T, Liu R, Huang Y N, Ji Y S, Wang D, Zong X X. Analysis of genetic diversity of faba bean varieties (lines) and superior germplasm using SSR markers. China Veget, 2018, (2): 34-41 (in Chinese with English abstract).
[30] 姜洪真, 马伯军, 钱前, 高振宇. 全基因组关联分析(GWAS)在作物农艺性状研究中的应用. 农业生物技术学报, 2018, 26: 1244-1257.
Jiang H Z, Ma B J, Qian Q, Gao Z Y. Application of genome-wide association analysis (GWAS) in the study of crop agronomic traits. J Agric Biotechnol, 2018, 26: 1244-1257 (in Chinese with English abstract).
[31] 孙梦涵. 基于SSR标记的藜麦种质资源遗传多样性分析和性状关联分析. 成都大学硕士学位论文, 四川成都, 2021.
Sun M H. Genetic Diversity Analysis and Trait Association Analysis of Quinoa Germplasm Resources Based on SSR Markers. MS Thesis of Chengdu University, Chengdu, Sichuan, China, 2021 (in Chinese with English abstract).
[32] 白鹏, 程须珍, 王丽侠, 王素华, 陈红霖. 小豆遗传差异、群体结构和连锁不平衡水平的SSR分析. 作物学报, 2014, 40: 788-797.
Bai P, Cheng X Z, Wang L X, Wang S H, Chen H L. SSR analysis of genetic differences, population structure and linkage disequilibrium levels in soybean. Acta Agron Sin, 2014, 40: 788-797 (in Chinese with English abstract).
[33] 岳庆春, 傅迦得, 章辰飞, 吴月燕. 植物关联分析应用研究进展. 江苏农业科学, 2019, 47(18): 24-30.
Yue Q C, Fu J D, Zhang C F, Wu Y Y. Progress of applied research on plant association analysis. Jiangsu Agric Sci, 2019, 47(18): 24-30 (in Chinese with English abstract).
[34] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I. 群体结构及关联标记. 作物学报, 2008, 34: 1169-1178.
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic quality traits with SSR markers in Chinese cultivated and wild soybean: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169-1178 (in Chinese with English abstract).
[35] Yu J M, Pressoir G, Briggs W H, Vroh B I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[36] Stich B, Melchinger A E. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics, 2009, 10: 94.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[3] 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000.
[4] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[5] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[6] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[7] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[8] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[9] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[10] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[11] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[12] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[13] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[14] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[15] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!