欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 68-78.doi: 10.3724/SP.J.1006.2025.41034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

新疆小麦过氧化物酶活性基因TaPod-A1TaPod-A3TaPod-D1等位变异及分布规律

刘鑫源1,2(), 程宇坤1,2, 王丽丽1, 战帅帅1, 马孟瑶1, 郭玲1, 耿洪伟1,2,*()   

  1. 1新疆农业大学农学院 / 新疆优质专用麦类作物工程技术研究中心, 新疆乌鲁木齐 830052
    2新疆作物遗传改良与种质创新重点实验室, 新疆乌鲁木齐 830052
  • 收稿日期:2024-05-10 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: *耿洪伟, E-mail: hw-geng@163.com
  • 作者简介:E-mail: 2063827796@qq.com
  • 基金资助:
    新疆自治区重点研发任务专项(2022B02001-3);新疆农业大学研究生科研创新计划项目(XJAUGRI2023005);新疆小麦产业技术体系建设专项(XJARS-01-02)

Allelic variation and distribution of peroxidase activity genes TaPod-A1, TaPod-A3, and TaPod-D1 of wheat in Xinjiang, China

LIU Xin-Yuan1,2(), CHENG Yu-Kun1,2, WANG Li-Li1, ZHAN Shuai-Shuai1, MA Meng-Yao1, GUO Ling1, GENG Hong-Wei1,2,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University / Xinjiang Engineering Technology Research Center for High-quality Special Wheat Crops, Urumqi 830052, Xinjiang, China
    2Xinjiang Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Urumqi 830052, Xinjiang, China
  • Received:2024-05-10 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: *E-mail: hw-geng@163.com
  • Supported by:
    Key R&D Project of Xinjiang Autonomous Region(2022B02001-3);Graduate Research and Innovation Program of Xinjiang Agricultural University(XJAUGRI2023005);Xinjiang Agriculture Research System(XJARS-01-02)

摘要:

小麦面粉的颜色是其品质分级的重要指标, 为了使小麦面粉的品质得到进一步提升, 本研究利用位于TaPod-A1、TaPod-A3TaPod-D1位点基因的功能标记对110份新疆小麦品种(系)进行等位变异基因检测。基因型与表型方差分析结果显示, TaPod-A1、TaPod-A3TaPod-D1位点的等位变异类型TaPod-A1b (35.5%)、TaPod-A3c (53.6%)和TaPod-D1b (60%)较其他等位变异类型TaPod-A1a (64.5%)、TaPod-A3a (46.4%)和TaPod-D1a (40%)均具有较高的POD活性。在新疆小麦材料中, TaPod-A1、TaPod-A3TaPod-D1的3个不同基因位点上高POD活性的优异等位变异类型的分布频率均表现为引进品种(系)≈自育品种(系)>地方品种。TaPod-A3b在110份新疆小麦材料中并未检测出, 说明该等位变异为稀有等位变异。具有TaPod-A1、TaPod-A3TaPod-D1基因等位变异组合品种(系)的平均POD活性高低依次为TaPod-A1b/TaPod-A3c/TaPod-D1b (2836.25 U g-1 min-1) > TaPod-A1b/TaPod-A3c/TaPod-D1a (2796.00 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1b (2520.31 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1b (2473.91 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1b (2407.65 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1a (2339.06 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1a (2320.38 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1a (2210.69 U g-1 min-1)。其中, 具有TaPod-A1b/TaPod-A3c/TaPod-D1b等位变异基因的活性(2836.25 U g-1 min-1)极显著高于具有TaPod-A1a/TaPod-A3a/TaPod-D1a (2210.69 U g-1 min-1) (P < 0.01)的品种, 说明具有较多优异等位变异类型的品种具有较高的POD活性。

关键词: 小麦, 过氧化物酶, 等位变异, 分子标记检测

Abstract:

To further improve the quality of wheat flour, functional markers for the TaPod-A1, TaPod-A3, and TaPod-D1 loci were employed to detect allelic variations in 110 wheat varieties (lines) from Xinjiang. Genotypic and phenotypic ANOVA results revealed that the TaPod-A1b (35.5%), TaPod-A3c (53.6%), and TaPod-D1b (60%) alleles associated with significantly higher POD activity compared to TaPod-A1a (64.5%), TaPod-A3a (46.4%), and TaPod-D1a (40%) alleles, respectively. In Xinjiang wheat cultivars, the distribution frequencies of favorable high-POD activity alleles at the TaPod-A1, TaPod-A3, and TaPod-D1 loci were higher in introduced varieties (lines)≈self-fertile varieties (lines) compared to landraces. Notably, the TaPod-A3b allele was absent in all 110 Xinjiang wheat samples, suggesting that it is a rare allele. The average POD activity of cultivars (lines) with specific alleles at the TaPod-A1, TaPod-A3, and TaPod-D1 genes followed the order: TaPod-A1b/TaPod-A3c/TaPod-D1b (2836.25 U g-1 min-1) > TaPod-A1b/TaPod-A3c/TaPod-D1a (2796.00 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1b (2520.31 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1b (2473.91 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1b (2407.65 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1a (2339.06 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1a (2320.38 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1a (2210.69 U g-1 min-1). Among these, the allele combination TaPod-A1b/TaPod-A3c/TaPod-D1b exhibited significantly higher POD activity (2836.25 U g-1 min-1) compared to the combination TaPod-A1a/TaPod-A3a/TaPod- D1a (2210.69 U g-1 min-1) (P < 0.01), indicating that varieties with superior allele combinations exhibit enhanced POD activity.

Key words: wheat, peroxidase, alleles, molecular marker testing

表1

检测POD基因的引物序列、扩增片段长度及其等位变异"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
扩增片段长度
Length of amplified fragment (bp)
等位变异
Allelic variation
POD-3A1 F: ACGGGAGACGACGAGAAGCAAAGA 291 TaPod-A1a
R: TCGTGGAAGTGTAGGCGAAGA
POD-3A2 F: GTGGCGCAGGGCCTGTCA 766 TaPod-A1b
R: GTTGTCGAACACGTTGGGGGA
POD-7A1 F: CACGAGACGCTGTGGAAGGACAG 216 TaPod-A3a
R: TCGCATTCAAGGACGCATACA
POD-7A2 F: TATTTTTTTTTTTTTTGCGTTC 882 TaPod-A3b
R: GGATCTCCCCCTTGCGTGCCGGTCTT
POD-7A3 F: AAGACCGGCACGCAGGGGGAGA 156 TaPod-A3c
R: TCGCATTCAAGGACGCATACA
POD-7D1 F: GCTTCGTCCAGGACGCGTT 540 TaPod-D1a
R: CGAGGAATGGGGGGTTGATG
POD-7D6 F: TGGGCATGGGGCTTCTGCA 640 TaPod-D1b
R: GCGAGGAATGGGGGGTTGATG

图1

标记POD-3A1和POD-3A2扩增的结果 M: marker DL2000; 1: 阿伯格其力格; 2: 伊农20; 3: 北京6号; 4: 碧蚂1号; 5: 碧蚂4号; 6: 洛夫林10号; 7: 无芒1号; 8: 新春3; 9: 新春22; 10: 新春26号。"

图2

标记POD-7A1和POD-7A3扩增的结果 M: marker DL2000; 1: 新冬32号; 2: 奎花一号; 3: 石冬7号; 4: 新冬34号; 5: 冀麦24; 6: 石冬8号; 7: 石冬9号; 8: 白蚰包; 9: 喀冬4号; 10: 冀麦26。"

图3

标记POD-7D1和POD-7D6扩增的结果 M: marker DL2000; 1: 喀冬1号; 2: 奎花4号; 3: 石冬7号; 4: 新冬27; 5: 新冬28号; 6: 新春11; 7: 新春40; 8: 新冬37; 9: 新冬36; 10: 新冬23。"

表2

不同类型品种小麦POD活性的分布"

等位变异基因
Allele
全部品种(系)
All varieties (lines)
冬小麦 Winter wheat 春小麦 Spring wheat
地方品种(系)
Landraces (lines)
自育品种(系)
Self-bred varieties (lines)
引进品种(系)
Introduced varieties (lines)
总计
Total
早期品种(系)
Early varieties (lines)
近期品种(系)
Recent varieties (lines)
总计
Total
TaPod-A1a 2363.2 a 2422.67 a 2338.04 a 2431.36 a 2389.16 a 0 2412.08 a 2412.08 a
TaPod-A1b 2664.29 b 3057.5 b 2437.5 a 2875.23 b 2673.81 b 2420.83 2703.65 a 2650.62 a
TaPod-A3a 2345.05 a 2422.5 a 2255.68 a 2502.29 a 2362.22 a 0 2216.25 a 2216.25 a
TaPod-A3b 0 0 0 0 0 0 0 0
TaPod-A3c 2577.92 b 2550 a 2508.97 a 2529.05 a 2523.55 a 2588.75 2794.04 a 2755.55 b
TaPod-D1a 2332.95 a 2363.75 a 2204.88 a 2465 a 2332.96 a 0 0 0
TaPod-D1b 2561.29 b 2521.5 a 2535.79 b 2584.5 a 2549.15 b 2420.83 2611.58 2585.57
TaPod-A1a/TaPod-A3a/TaPod-D1a 2210.69 a 2225 a 2115 ab 2505.833 abcd 2210.69 a 0 0 0
TaPod-A1a/TaPod-A3a/TaPod-D1b 2407.65 ab 2587.083 a 2385 ab 2162.5 a 2406.5 ab 0 2416.25 ab 2416.25 ab
TaPod-A1a/TaPod-A3c/TaPod-D1b 2473.91 ab 2423.125 a 2528 ab 2457.5 abc 2487.37 abcd 0 2410 ab 2410 ab
TaPod-A1a/TaPod-A3c/TaPod-D1a 2320.38 a 0 2370 ab 2305.5 ab 2320.38 abc 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1a 2339.06 a 0 2009.375 a 2668.75 abcd 2339.06 ab 0 0 0
TaPod-A1b/TaPod-A3c/TaPod-D1a 2796 c 3057.5 b 2600 ab 3122.5 cd 2796 d 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1b 2520.31 ab 0 2837.5 b 3185 d 2924.38 bcd 0 2116.25 a 2116.25 a
TaPod-A1b/TaPod-A3c/TaPod-D1b 2836.2 5c 0 2462.5 ab 2929 bcd 2851.25 cd 2420.83 2964.72 b 2828.75 b

表3

不同类型新疆小麦品种(系)等位变异的分布频率"

等位变异基因
Allele
全部品种(系)
All varieties
(lines)
冬小麦 Winter wheat 春小麦 Spring wheat
地方品种(系)
Landraces
(lines)
自育品种(系)
Self-bred varieties (lines)
引进品种(系)
Introduced varieties (lines)
总计
Total
早期品种(系)
Early varieties
(lines)
近期品种(系)
Recent varieties (lines)
总计
Total
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency (%)
TaPod-A1a 71 64.5 15 93.8 28 71.8 22 66.7 65 73.9 0 0 6 31.6 6 27.3
TaPod-A1b 39 35.5 1 6.2 11 28.2 11 33.3 23 26.1 3 100 13 68.4 16 72.7
TaPod-A3a 51 46.4 11 68.8 22 56.4 12 36.4 45 51.1 0 0 6 31.6 6 27.3
TaPod-A3b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TaPod-A3c 59 53.6 5 31.2 17 43.6 21 63.6 43 48.9 3 100.0 13 68.4 16 72.7
TaPod-D1a 44 0.4 6 37.5 20 51.3 18 54.5 44 50.0 0 0 0 0 0 0
TaPod-D1b 66 0.6 10 62.5 19 48.7 15 45.5 44 50.0 3 100.0 19 100.0 22 100.0
TaPod-A1a/TaPod-A3a/TaPod-D1a 18 16.4 5 31.25 10 25.6 3 9.1 18 20.5 0 0 0 0 0 0
TaPod-A1a/TaPod-A3a/TaPod-D1b 17 15.5 6 37.5 5 12.8 4 12.1 15 17.0 0 0 2 10.5 2 9.1
TaPod-A1a/TaPod-A3c/TaPod-D1b 23 20.9 4 25 10 25.6 5 15.2 19 21.6 0 0 4 21.1 4 18.2
TaPod-A1a/TaPod-A3c/TaPod-D1a 13 11.8 0 0 3 7.7 10 30.3 13 14.8 0 0 0 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1a 8 7.3 0 0 4 10.3 4 12.1 8 9.1 0 0 0 0 0 0
TaPod-A1b/TaPod-A3c/TaPod-D1a 5 4.5 1 6.25 3 7.7 1 3.0 5 5.7 0 0 0 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1b 8 7.3 0 0 3 7.7 1 3.0 4 4.5 0 0 4 21.1 4 18.2
TaPod-A1b/TaPod-A3c/TaPod-D1b 18 16.3 0 0 1 2.6 5 15.2 6 6.8 3 100.0 9 47.3 12 54.5
[1] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics and breeding. J Plant Genet Resour, 2018, 19: 430-434 (in Chinese with English abstract).
[2] Evlice A K, Özkaya H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J Cereal Sci, 2020, 96: 103124.
[3] 王瑞, 张永科, 郭勇, 孔令让, 胡希远. 小麦不同阶段产品品质性状的变异及其关系. 麦类作物学报, 2018, 38: 900-905.
Wang R, Zhang Y K, Guo Y, Kong L R, Hu X Y. Variability and relationship of quality characters of wheat at different product stages. J Triticeae Crops, 2018, 38: 900-905 (in Chinese with English abstract).
[4] 何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39: 1091-1101.
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006, 39: 1091-1101 (in Chinese with English abstract).
[5] Gélinas P, Poitras E, McKinnon C M, Morin A. Oxido-reductases and lipases as dough-bleaching agents. Cereal Chem, 1998, 75: 810-814.
[6] Mcdonald C E. Lipoxygenase and lutein bleaching activity of durum wheat semolina. Cereal Chem, 1979, 56: 84-89.
[7] Iori R, Cavalieri B, Palmieri S. Cathodic peroxidases of durum wheat flour. Cereal Chem, 1995, 72: 176-181.
[8] Borrelli G M, Troccoli A, Di Fonzo N, Fares C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem, 1999, 76: 335-340.
[9] Delcros J F, Rakotozafy L, Boussard A, Davidou S, Porte C, Potus J, Nicolas J. Effect of mixing conditions on the behavior of lipoxygenase, peroxidase, and catalase in wheat flour doughs. Cereal Chem, 1998, 75: 85-93.
[10] Hessler T G, Thomson M J, Benscher D, Nachit M M, Sorrells M E. Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci, 2002, 42: 1695-1700.
[11] van den Berg B M, Chibbar R N, van Huystee R B. A comparative study of a cationic peroxidase from peanut and an anionic peroxidase from Petunia. Plant Cell, 1983, 2: 304-307.
[12] Revanappa S B, Salimath P V, Prasada Rao UJS. Effect of peroxidase on textural quality of dough and Arabinoxylan characteristics isolated from whole wheat flour dough. Int J Food Prop, 2014, 17: 2131-2141.
[13] 胡瑞波, 田纪春, 邓志英, 张永祥. 中国白盐面条色泽影响因素的研究. 作物学报, 2006, 32: 1338-1343.
Hu R B, Tian J C, Deng Z Y, Zhang Y X. Factors related to Chinese white salted noodle color. Acta Agron Sin, 2006, 32: 1338-1343 (in Chinese with English abstract).
[14] Hidalgo A, Brandolini A, Pompei C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem, 2010, 121: 746-751.
[15] Maksimov I V, Cherepanova E A, Kuzmina O I, Yarullina L G, Akhunov A A. Molecular peculiarities of the chitin-binding peroxidases of plants. Russ J Bioorg Chem, 2010, 36: 293-300.
[16] Žilić S, Dodig D, Šukalović V H T, Maksimović M, Saratlić G, Škrbić B. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities. Int J Food Sci Technol, 2010, 45: 1360-1367.
[17] Takasaki S, Kato Y, Murata M, Homma S, Kawakishi S. Effects of peroxidase and hydrogen peroxide on the dityrosine formation and the mixing characteristics of wheat-flour dough. Biosci Biotechnol Biochem, 2005, 69: 1686-1692.
[18] Brenchley R, Spannagl M, Pfeifer M, Barker G L A, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N X, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F X, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature, 2012, 491: 705-710.
[19] Wei J X, Geng H W, Zhang Y, Liu J D, Wen W E, Zhang Y, Xia X C, Chen X M, He Z H. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1on wheat chromosome 3AL. Theor Appl Genet, 2015, 128: 2067-2076.
[20] 时佳, 翟胜男, 刘金栋, 魏景欣, 白璐, 高文伟, 闻伟锷, 何中虎, 夏先春, 耿洪伟. 普通小麦籽粒过氧化物酶活性全基因组关联分析. 中国农业科学, 2017, 50: 4212-4227.
Shi J, Zhai S N, Liu J D, Wei J X, Bai L, Gao W W, Wen W E, He Z H, Xia X C, Geng H W. Genome-wide association study of grain peroxidase activity in common wheat. Sci Agric Sin, 2017, 50: 4212-4227 (in Chinese with English abstract).
[21] Geng H W, Shi J, Fuerst E P, Wei J X, Morris C F. Physical mapping of peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Front Plant Sci, 2019, 10: 523.
[22] 谢磊, 战帅帅, 王丽丽, 任毅, 时佳, 耿洪伟. 新疆冬小麦过氧化物酶基因TaPod-D1TaPod-A1的等位变异及分布. 麦类作物学报, 2019, 39: 262-267.
Xie L, Zhan S S, Wang L L, Ren Y, Shi J, Geng H W. Molecular identification and distribution analysis of peroxidase gene TaPod-D1and TaPod-A1 in Xinjiang winter wheat. J Triticeae Crops, 2019, 39: 262-267 (in Chinese with English abstract).
[23] 王丽丽, 战帅帅, 谢磊, 王继庆, 哈尼开·马坎, 任毅, 时佳, 耿洪伟. 新疆小麦籽粒过氧化物酶(POD)活性检测及其基因等位变异检测. 新疆农业科学, 2020, 57: 1765-1774.
Wang L L, Zhan S S, Xie L, Wang J Q, Ma H, Ren Y, Shi J, Geng H W. Identification of peroxidase activity and allelic variation in wheat. Xinjiang Agric Sci, 2020, 57: 1765-1774 (in Chinese).
[24] 邓彪, 屈国胜, 王茹, 张晓科, 孙道杰, 杨松杰. 陕西省地方小麦品种多酚氧化酶基因等位变异检测及分布. 分子植物育种, 2009, 7: 478-482.
Deng B, Qu G S, Wang R, Zhang X K, Sun D J, Yang S J. Molecular identification and distribution of me polyphenol oxidase genes in Shaanxi winter wheat cultivars. Mol Plant Breed, 2009, 7: 478-482 (in Chinese with English abstract).
[25] Taneja S R, Abrol Y P, Sachar R C. Modulation of o-diphenolase and monophenolase enzymes during wheat grain development. Cereal Chem, 1974, 51: 457-465.
[26] McCaig T N, Fenn D Y K, Knox R E, Depauw R M, Clarke J M, McLeod J G. Measuring polyphenol oxidase activity in a wheat breeding program. Can J Plant Sci, 1999, 79: 507-514.
[27] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
[28] Demeke T, Morris C F, Campbell K G, King G E, Anderson J A, Chang H G. Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci, 2001, 41: 1750-1757.
[29] 时佳, 白璐, 任毅, 穆培源, 梁晓东, 玛依拉, 耿洪伟. 新疆小麦TaGW2-6A、TaCwi-A1、Tasus2-2B等位变异对粒重的影响及应用. 分子植物育种, 2018, 16: 848-858.
Shi J, Bai L, Ren Y, Mu P Y, Liang X D, Ma Y L, Geng H W. Effects and application of allelic variation of TaGW2-6A, TaCwi-A1 and TaSus2-2B on grain weight of Xinjiang wheat. Mol Plant Breed, 2018, 16: 848-858 (in Chinese with English abstract).
[30] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39: 682-691.
Jiang J, Jiang Y, Wang S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. J Triticeae Crops, 2019, 39: 682-691 (in Chinese with English abstract).
[31] 孙静, 王宪泽. 盐胁迫对小麦过氧化物酶同工酶基因表达的影响. 麦类作物学报, 2006, 26: 42-44.
Sun J, Wang X Z. Effects of salt stress on gene expression of peroxidase isozyme in wheat. J Triticeae Crops, 2006, 26: 42-44 (in Chinese with English abstract).
[32] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23: 2031-2038.
Li S Q, Shao M A, Li Z Y, Wu W M, Zhang X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Bot Boreali-Occident Sin, 2003, 23: 2031-2039 (in Chinese with English abstract).
[33] 黄静, 张运, 汪明秀, 王芳, 汤志, 何好. 近17年新疆干旱时空分布特征及影响因素. 生态学报, 2020, 40: 1077-1088.
Huang J, Zhang Y, Wang M X, Wang F, Tang Z, He H. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years. Acta Ecol Sin, 2020, 40: 1077-1088 (in Chinese with English abstract).
[34] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract).
[35] Thorwarth P, Liu G Z, Ebmeyer E, Schacht J, Schachschneider R, Kazman E, Reif J C, Würschum T, Longin C F H. Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population. Theor Appl Genet, 2019, 132: 489-500.
[36] 张晓, 高德荣, 李曼, 刘大同, 吴素兰, 江伟, 吕国锋. 小麦面粉和鲜面片色泽及Psy-A1Ppo-A1等位变异检测. 麦类作物学报, 2019, 39: 415-422.
Zhang X, Gao D R, Li M, Liu D T, Wu S L, Jiang W, Lyu G F. Color of flour and fresh dough sheet of wheat varieties and detection of allelic variations for genes psy-A1 and ppo-A1. J Triticeae Crops, 2019, 39: 415-422 (in Chinese with English abstract).
[37] 相吉山, 穆培源, 桑伟, 聂迎彬, 徐红军, 崔凤娟, 韩新年, 邹波. 新疆小麦品种资源脂肪氧化酶活性基因TaLox-B1的分布特征研究. 麦类作物学报, 2013, 33: 279-285.
Xiang J S, Mu P Y, Sang W, Nie Y B, Xu H J, Cui F J, Han X N, Zou B. Distribution characteristics of lipid oxidase active gene Talox-B1 in wheat germplasm resources of Xinjiang. J Triticeae Crops, 2013, 33: 279-285 (in Chinese with English abstract).
[38] 陈钰, 郭爱华, 姚月俊, 姚延梼. 低温胁迫下杏花器官内POD、相对电导率和可溶性蛋白含量的变化. 山西农业科学, 2007, 35: 30-32.
Chen Y, Guo A H, Yao Y J, Yao Y T. The change of POD enzymes, relative conductivities and soluble proteins in flower of almond under cold stress. J Shanxi Agric Sci, 2007, 35: 30-32 (in Chinese with English abstract).
[39] 张顺琴, 王素芳, 陈梦玫, 林志华. Cu2+对泥蚶血红蛋白(Tg-HbII)的过氧化物酶活性与结构的影响. 海洋学报(中文版), 2018, 40: 106-114.
Zhang S Q, Wang S F, Chen M M, Lin Z H. Effects of Cu2+on structure and peroxidase activity of Tegillarca granosa hemoglobin (Tg-HbII). Haiyang Xuebao, 2018, 40: 106-114 (in Chinese with English abstract).
[40] 马传喜, 姚大年, 阮龙, 陶永祥, 韩峰, 柏发梢. 小麦品种产量和品质性状相关的研究. 安徽农业科学, 1997, 25: 99-100.
Ma C X, Yao D N, Ruan L, Tao Y X, Han F, Bai F S. Correlation between yield and quality traits in wheat varieties. J Anhui Agric Sci, 1997, 25: 99-100 (in Chinese with English abstract).
[41] Bagge M, Xia X, Lübberstedt T. Functional markers in wheat. Curr Opin Plant Biol, 2007, 10: 211-216.
[42] Borrelli G M, De Leonardis A M, Fares C, Platani C, Di Fonzo N. Effects of modified processing conditions on oxidative properties of Semolina dough and pasta. Cereal Chem, 2003, 80: 225-231.
[1] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[2] 杨芳萍, 郭莹, 田媛媛, 徐玉风, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382.
[3] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[4] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[5] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[6] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[7] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[8] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[9] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[10] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[11] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[12] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[13] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[14] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[15] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .