• •
曹志洋1,**,高丽锋2,**,姜东言1,王曙光1,杨进文1,贾继增2,李宁1,*,孙黛珍1,*
CAO Zhi-Yang1,**,GAO Li-Feng2,**,JIANG Dong-Yan1,WANG Shu-Guang1,YANG Jin-Wen1,JIA Ji-Zeng2,LI Ning1,*,SUN Dai-Zhen1,*
摘要:
磷是作物生长发育所必需的大量元素之一,土壤中只有少部分磷可被植物有效利用,而长期施用磷肥又可能造成环境污染。因此筛选强耐低磷品种、挖掘耐低磷相关QTL与候选基因具有重要意义。本研究采用389份小麦品种组成的自然群体,在正常磷(对照)和低磷条件下进行3年(2022—2024)的苗期水培试验,测定苗高、主根长、根条数、茎叶干重、根干重、总根长、根面积、根直径和根尖数9个性状,并计算每个性状的耐低磷系数和BLUP值,然后根据耐低磷系数计算综合评价D值。基于3个环境下的BLUP值进行相关性分析,发现低磷和对照条件下,除根直径外,大多数性状之间呈显著正相关。利用综合评价D值进行聚类分析显示,“丰德存麦1号”在4个环境(2022、2023、2024、BLUP)下均被鉴定为强耐低磷型品种。结合660K SNP芯片,对4个环境下9个性状的耐低磷系数和D值进行全基因组关联分析,共检测到1197个显著关联的SNP标记,形成了464个QTL。其中在2个环境下重复检测到20个QTL,在3个和4个环境下重复检测到7个QTL,标记位点解释的贡献率R2范围为4.09%~10.58%。然后,利用前人报道的转录组数据结合基因功能注释,在这7个QTL区间内筛选到3个耐低磷相关候选基因,其中TraesCS4D02G022900和TraesCS4D02G023300编码F-box家族蛋白,拟南芥的同源基因At5g21040编码一种同时含有WD40和F-box结构域的蛋白,是磷饥饿响应的负调控因子;TraesCS6D02G154700编码的类受体蛋白激酶与植物的生长、发育、抗逆以及抗病有关。进一步分析这3个候选基因低磷胁迫下叶片和根系的表达模式,发现均具有差异表达,与前人的转录组结果一致。这些发现为选育耐低磷小麦品种,解析低磷胁迫相关基因的功能和调控机制提供了基础。
[1] Niu Y N, Xie G D, Xiao Y, Liu J Y, Zou H X, Qin K Y, Wang Y Y, Huang M D. The story of grain self-sufficiency: China’s food security and food for thought. Food Energy Secur, 2022, 11: e344. [2] Zhang C, Tian H Q, Liu J Y, Wang S Q, Liu M L, Pan S F, Shi X Z. Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles, 2005, 19: 2004GB002296. [3] 戈应同, 王宇蕴, 徐翔, 李兰, 高江飞, 徐智. 有机肥增强植物磷素吸收利用机制研究进展. 中国土壤与肥料, 2024, (7): 228–235. Ge Y T, Wang Y Y, Xu X, Li L, Gao J F, Xu Z. Research progress on the mechanism of phosphorus absorption and utilization enhanced by organic fertilizer. Soil Fertil Sci China, 2024, (7):228–235 (in Chinese with English abstract). [4] Wang D, Lyu S L, Jiang P, Li Y X. Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci, 2017, 8: 817. [5] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, Wang D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546. [6] Hari-Gowthem G, Kaur S, Sekhon B S, Sharma P, Chhuneja P. Genetic variation for phosphorus-use efficiency in diverse wheat germplasm. J Crop Improv, 2019, 33: 536–550. [7] Li X, Chen Y L, Xu Y Z, Sun H Y, Gao Y M, Yan P, Song Q L, Li S Q, Zhan A. Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 2024, 13: 3361. [8] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831–845. Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831–845 (in Chinese with English abstract). [9] Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics, 2021, 22: 174. [10] Yuan Y, Zhang M, Zheng H, Kong F, Guo Y, Zhao Y, An Y. Detection of QTL for phosphorus efficiency and biomass traits at the seedling stage in wheat. Cereal Res Commun, 2020, 48: 517–524. [11] Dai Y, Li J F, Shi J T, Gao Y J, Ma H G, Wang Y G, Ma H X. Molecular characterization and marker development of the HMW-GS gene from Thinopyrum elongatum for improving wheat quality. Int J Mol Sci, 2023, 24: 11072. [12] Lin X L, Xu Y X, Wang D Z, Yang Y M, Zhang X Y, Bie X M, Gui L X, Chen Z X, Ding Y L, Mao L, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol Plant, 2024, 17: 438–459. [13] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742–2753. Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742–2753 (in Chinese with English abstract). [14] Seren Ü, Vilhjálmsson B J, Horton M W, Meng D Z, Forai P, Huang Y S, Long Q, Segura V, Nordborg M. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell, 2012, 24: 4793–4805. [15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813–1821. Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813–1821 (in Chinese with English abstract). [16] Chao Z F, Chen Y Y, Ji C, Wang Y L, Huang X, Zhang C Y, Yang J, Song T, Wu J C, Guo L X, et al. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep, 2023, 24: e55542. [17] Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J, 2022, 20: 1807–1818. [18] Wang Q S, Tian F, Pan Y C, Buckler E S, Zhang Z W. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684. [19] Lin Y, Chen G D, Hu H Y, Yang X L, Zhang Z L, Jiang X J, Wu F K, Shi H R, Wang Q, Zhou K Y, et al. Phenotypic and genetic variation in phosphorous-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol, 2020, 20: 330. [20] Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal P K, Pandey R, Shrivastava M, Gaikwad K B, Bainsla N K, et al. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorus conditions in wheat (Triticum aestivum L.). Front Genet, 2022, 13: 984720. [21] Maqbool S, Saeed F, Maqbool A, Khan M I, Ali M, Rasheed A, Xia X C, He Z H. Genome-wide association study for phosphate responsive root hair length and density in bread wheat. Curr Plant Biol, 2023, 35: 100290. [22] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21: 431–445. Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y H, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. J Plant Genet Resour, 2020, 21: 431–445 (in Chinese with English abstract). [23] Yang B, Qiao L, Zheng X W, Zheng J, Wu B B, Li X H, Zhao J J. Quantitative trait loci mapping of heading date in wheat under phosphorus stress conditions. Genes, 2024, 15: 1150. [24] Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175. [25] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289–4302.
[26] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46: 1984–1993. [27] Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models Usinglme4. J Stat Soft, 2015, 67: 1–48. [28] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208. [29] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959. [30] Turner S D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw, 2018, 3: 731.
[31] 李龙. 小麦根系形态及抗旱相关生理性状的遗传解析. 中国农业科学院博士学位论文, 北京, 2017. [32] Luo D Z, Usman M, Pang F, Zhang W J, Qin Y, Li Q, Li Y R, Xing Y X, Dong D F. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Sci Rep, 2024, 14: 11050. [33] Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, et al. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling. Int J Mol Sci, 2023, 24: 14840. [34] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 2023, 12: 2861. [35] Fadiji A E, Yadav A N, Santoyo G, Babalola O O. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res, 2023, 271: 127368. [36] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391–408. [37] Soumya P R, Burridge A J, Singh N, Batra R, Pandey R, Kalia S, Rai V, Edwards K J. Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder’s Affymetrix array. Sci Rep, 2021, 11: 7601. [38] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究. 河南农业科学, 2014, 43(5): 24–29. Yang W B, Cheng Y, Zhang Y, Lin D L, Li X, Xing G Z, Xu J, Zheng W M. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture. J Henan Agric Sci, 2014, 43(5): 24–29 (in Chinese with English abstract).
[39] 郑继周, 张廷封, 杨文涛, 郑天存. 国审小麦新品种: 丰德存麦1号. 麦类作物学报, 2017, 37: 855. [40] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354–1360. [41] Liu B, Xu W Y, Niu Y X, Li Q Y, Cao B L, Qi J Y, Zhao Y D, Zhou Y L, Song L, Cui D K, et al. TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun, 2025, 16: 1683. [42] Han Y C, Liu N, Li C, Wang S W, Jia L H, Zhang R, Li H, Tan J F, Xue H W, Zheng W M. TaMADS2-3D, a MADS transcription factor gene, regulates phosphate starvation responses in plants. Crop J, 2022, 10: 243–253. [43] Guo C J, Zhao X L, Liu X M, Zhang L J, Gu J T, Li X J, Lu W J, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013, 237: 1163–1178. [44] Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. Identification of major quantitative trait loci for root diameter in synthetic hexaploid wheat under phosphorus-deficient conditions. J Appl Genet, 2017, 58: 437–447. [45] Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631–638. [46] Chen Z H, Jenkins G I, Nimmo H G. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol, 2008, 49: 1902–1906. [47] Akash, Parida A P, Srivastava A, Mathur S, Sharma A K, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem, 2021, 162: 349–362. [48] Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor‐like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316–329. [49] Jose J, Ghantasala S, Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci, 2020, 21: 4000. [50] Shi J C, Zhao B Y, Jin R, Hou L, Zhang X W, Dai H L, Yu N, Wang E T. A phosphate starvation response‐regulated receptor‐like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytol, 2022, 236: 2282–2293. |
[1] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[2] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[3] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[4] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
[5] | 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756. |
[6] | 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913. |
[7] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
[8] | 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547. |
[9] | 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525. |
[10] | 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557. |
[11] | 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653. |
[12] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[13] | 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276. |
[14] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
[15] | 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177. |
|