欢迎访问作物学报,今天是

作物学报

• •    

近二十年国审冬小麦品种的产量与品质性状变化趋势研究

吴柳格,陈坚,张鑫,邓艾兴,宋振伟,郑成岩*,张卫建   

  1. 中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京100081
  • 收稿日期:2024-12-18 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-04-07
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD2300801-02), 国家自然科学基金项目(32272218)和中国农业科学院科技创新工程项目(CAAS-ZDRW202407, 01-ICS-20)资助。

Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years

WU Liu-Ge,CHEN Jian,ZHANG Xin,DENG Ai-Xing,SONG Zhen-Wei,ZHENG Cheng-Yan*,ZHANG Wei-Jian   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2024-12-18 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-04-07
  • Supported by:
    This study was supported by the National Key Research and Development Program (2022YFD2300801-02), the National Natural Science Foundation of China (32272218), and Agricultural Science and Technology Innovation Program (CAAS-ZDRW202407, 01-ICS-20).

摘要:

分析近二十年北方冬麦区与南方冬麦区国审冬小麦品种产量和品质变化及性状之间的相关性,旨在明确品种更替过程中冬小麦产量和品质的变化趋势,为未来高产优质小麦育种和栽培技术创新提供重要参考。收集并整理2000—2024北方冬麦区与南方冬麦区1187个国审冬小麦品种数据,将其按品质类型分为强筋、中强筋、中筋与弱筋4种类型,并对其产量及构成因素、品质指标等进行了分析。自2017年起,2个麦区国审冬小麦品种数量显著增加;均以中筋品种为主。北方冬麦区的中强筋品种产量高于强筋和中筋品种,南方冬麦区的中强筋品种产量高于弱筋品种。北方冬麦区品种的生育期显著缩短,产量随时间显著增加,以中强筋品种增幅最大,为0.14 t hm-2,中强筋品种的蛋白质和湿面筋含量年均减少,分别减少0.07%0.15%,强筋和中强筋品种的稳定时间年均增加,分别增加0.27 min0.25 min;南方冬麦区中强筋和中筋品种产量显著增加,中筋品种的湿面筋含量和稳定时间年均分别增加0.22%0.07 min。在北方冬麦区,强筋和中强筋品种的穗粒数与产量的相关性最高。中筋品种的千粒重与产量的相关性最高。强筋和中强筋品种的蛋白质含量与湿面筋、稳定时间和拉伸面积均呈正相关。在南方冬麦区,中强筋和中筋品种的穗数与产量呈显著正相关,弱筋品种穗粒数与产量呈正相关。北方冬麦区冬小麦通过统筹提高产量构成三因素,进一步提高产量和品质;南方冬麦区中强筋和中筋小麦的穗数是提高产量的关键因素,弱筋小麦则通过增加穗粒数并优化栽培管理以保持较低的蛋白质含量,从而提升产量并确保加工适应性。在未来气候变化的背景下,如何实现产量与品质的协同提升,是我国小麦育种和优质栽培创新亟待解决的重要科技问题。

关键词: 冬小麦, 国家审定, 品种, 产量, 品质

Abstract:

This study examines changes in the yield and quality of nationally approved winter wheat varieties in China’s Northern and Southern winter wheat production areas over the past two decades, as well as the correlations between these traits. The objective is to clarify trends in yield and quality during variety replacement, providing a valuable reference for future wheat breeding and high-quality cultivation innovations. A total of 1,187 nationally approved winter wheat varieties from 2000 to 2024 were analyzed and classified into four quality types: strong gluten wheat (SGW), medium strong gluten wheat (MSGW), middle gluten wheat (MGW), and weak gluten wheat (WGW). Their yield potential, yield components, and quality characteristics were evaluated. Since 2017, the number of approved winter wheat varieties has increased significantly in both production areas, with MGW being the dominant type. In the Northern winter wheat area, MGW varieties exhibited the highest yield, while in the Southern winter wheat area, MGW varieties outperformed WGW in yield. In the Northern region, as the approval year increased, growth duration significantly shortened, and yield improved over time, with MSGW varieties showing the largest yield increase (0.14 t hm-2 per year). However, protein and wet gluten content in MSGW varieties declined annually by 0.07% and 0.15%, respectively, while the stability time of SGW and MSGW varieties increased by 0.27 and 0.25 minutes per year, respectively. In the Southern region, MSGW and MGW varieties exhibited significant yield increases, with MGW varieties showing annual increases of 0.22% in wet gluten content and 0.07 minutes in stability time. Correlation analysis revealed that in the Northern region, the number of grains per spike had the highest correlation with yield in SGW and MGW varieties, while grain weight showed the strongest correlation with yield in MGW varieties. Additionally, protein content in SGW and MGW varieties was positively correlated with wet gluten content, stability time, and stretch area. In the Southern region, spike number was significantly positively correlated with yield in MSGW and MGW varieties, while in WGW varieties, the number of grains per spike was positively correlated with yield. In the Northern region, a balanced increase in yield components further enhanced both yield and quality, whereas in the Southern region, MSGW and MGW varieties improved yield through increased spike number, while WGW varieties maintained lower protein content by increasing grains per spike and optimizing cultivation management, thereby enhancing yield while ensuring processing adaptability. Looking ahead, under the challenges of climate change, achieving a coordinated improvement in both yield and quality remains a critical scientific issue that must be urgently addressed in China’s wheat breeding and high-quality cultivation innovations.

Key words: winter wheat, national approval, variety, yield, quality

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京:中国统计出版社, 2020.

National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in Chinese).

[2] 何中虎, 夏先春, 陈新民, 庄巧生.中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215.

He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract).

[3] Senapati N, Semenov M A, Halford N G, Hawkesford M J, Asseng S, Cooper M, Ewert F, van Ittersum M K, Martre P, Olesen J E, et al. Global wheat production could benefit from closing the genetic yield gap. Nat Food, 2022, 3: 532–541.

[4] 齐琳娟, 胡学旭, 周桂英, 王爽, 李静梅, 陆伟, 吴丽娜, 陆美斌, 孙丽娟, 杨秀兰, 等. 2004—2011年中国主产省小麦蛋白质品质分析. 中国农业科学, 2012, 45: 4242–4251.

Qi L J, Hu X X, Zhou G Y, Wang S, Li J M, Lu W, Wu L N, Lu M B, Sun L J, Yang X L, et al. Analysis of wheat protein quality in main wheat producing areas of China from 2004 to 2011. Sci Agric Sin, 2012, 45: 4242–4251 (in Chinese with English abstract).

[5] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013, 46: 1114–1126.

Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong Province recently. Sci Agric Sin, 2013, 46: 1114–1126 (in Chinese with English abstract).

[6] 胡学旭, 孙丽娟, 周桂英, 吴丽娜, 陆伟, 李为喜, 王爽, 杨秀兰, 宋敬可, 王步军. 2000—2015年北部、黄淮冬麦区国家区试品种的品质特征. 作物学报, 2017, 43: 501–509.

Hu X X, Sun L J, Zhou G Y, Wu L N, Lu W, Li W X, Wang S, Yang X L, Song J K, Wang B J. Quality variation of national tested varieties in northern winter wheat region and Yellow–Huai river valley winter wheat region from 2000 to 2015. Acta Agron Sin, 2017, 43: 501–509 (in Chinese with English abstract).

[7] 郝天佳, 曲文凯, 赵金科, 邓肖, 张霞, 李柯煜, 徐学欣, 赵长星. 1991—2018年中国国审小麦品种产量与品质相关性状的变化趋势分析. 中国粮油学报, 2023, 38(8): 84–93.

Hao T J, Qu W K, Zhao J K, Deng X, Zhang X, Li K Y, Xu X X, Zhao C X. Trends of yield and quality related traits of wheat varieties released in China from 1991 to 2018. J Chin Cereals Oils Assoc, 2023, 38(8): 84–93 (in Chinese with English abstract).

[8] 李式昭, 涂洋, 朱华忠, 吕季娟, 郑建敏, 万洪深, 罗江陶, 杨漫宇, 伍玲. 2009—2020年国家小麦区域试验长江上游组参试品系产量性状分析. 四川农业大学学报, 2022, 40: 19–27.

Li S Z, Tu Y, Zhu H Z, Lyu J J, Zheng J M, Wan H S, Luo J T, Yang M Y, Wu L. Yield traits analysis of new wheat lines (varieties) in upper reaches of Yangtze River Basin of national trial during 2009–2020. J Sichuan Agric Univ, 2022, 40: 19–27 (in Chinese with English abstract).

[9] 胡学旭, 孙丽娟, 周桂英, 吴丽娜, 陆伟, 李为喜, 王爽, 杨秀兰, 宋敬可, 王步军. 2006–2015年中国小麦质量年度变化. 中国农业科学, 2016, 49: 3063–3072.

Hu X X, Sun L J, Zhou G Y, Wu L N, Lu W, Li W X, Wang S, Yang X L, Song J K, Wang B J. Variations of wheat quality in China from 2006 to 2015. Sci Agric Sin, 2016, 49: 3063–3072 (in Chinese with English abstract).

[10] 魏益民, 张波, 关二旗, 张国权, 张影全, 宋哲民. 中国冬小麦品质改良研究进展. 中国农业科学, 2013, 46: 4189–4196.

Wei Y M, Zhang B, Guan E Q, Zhang G Q, Zhang Y Q, Song Z M. Advances in study of quality property improvement of winter wheat in China. Sci Agric Sin, 2013, 46: 4189–4196 (in Chinese with English abstract).

[11] 张华崇, 赵树琪, 闫振华, 黄晓莉, 戴宝生, 李蔚. 湖北省近20年审定小麦品种的产量、品质性状及抗病性分析. 麦类作物学报, 2021, 41: 1356–1364.

Zhang H C, Zhao S Q, Yan Z H, Huang X L, Dai B S, Li W. Analysis of yield, quality and disease resistance traits of wheat varieties approved in Hubei province in the last two decades. J Triticeae Crops, 2021, 41: 1356–1364 (in Chinese with English abstract).

[12] 赵广才中国小麦种植区划研究(). 麦类作物学报, 2010, 30: 886–895.

Zhao G C. Study on Chinese wheat planting regionalization (Ⅰ). J Triticeae Crops, 2010, 30: 886–895 (in Chinese with English abstract).

[13] 李爱国, 宋晓霞, 张文斐, 王改革. 2001—2020年河南省审定小麦品种育种特点及表型性状演变分析. 麦类作物学报, 2021, 41: 947–959.

Li A G, Song X X, Zhang W F, Wang G G. Breeding characteristics and phenotypic traits evolution of wheat varieties approved in Henan province during 2001–2020. J Triticeae Crops, 2021, 41: 947–959 (in Chinese with English abstract).

[14] Slafer G A, García G A, Serrago R A, Miralles D J. Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Res, 2022, 285: 108593.

[15] Katamadze A, Vergara–Díaz O, Uberegui E, Yoldi-Achalandabaso A, Araus J L, Vicente R. Evolution of wheat architecture, physiology, and metabolism during domestication and further cultivation: Lessons for crop improvement. Crop J, 2023, 11: 1080–1096.

[16] Zheng C Y, Zhang J, Chen J, Chen C Q, Tian Y L, Deng A X, Song Z W, Nawaz M M, van Groenigen K J, Zhang W J. Nighttime warming increases winter–sown wheat yield across major Chinese cropping regions. Field Crops Res, 2017, 214: 202–210.

[17] Xiao J, Liu B, Yao Y Y, Guo Z F, Jia H Y, Kong L R, Zhang A M, Ma W J, Ni Z F, Xu S B, et al. Wheat genomic study for genetic improvement of traits in China. Sci China Life Sci, 2022, 65: 1718–1775.

[18] Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. Achieving yield gains in wheat. Plant Cell Environ, 2012, 35: 1799–1823.

[19] Qin X L, Zhang F X, Liu C, Yu H, Cao B G, Tian S Q, Liao Y C, Siddique K H M. Wheat yield improvements in China: Past trends and future directions. Field Crops Res, 2015, 177: 117–124.

[20] Aisawi K A B, Reynolds M P, Singh R P, Foulkes M J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci, 2015, 55: 1749–1764.

[21] Zheng T C, Zhang X K, Yin G H, Wang L N, Han Y L, Chen L, Huang F, Tang J W, Xia X C, He Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Res, 2011, 122: 225–233.

[22] 熊淑萍, 高明, 张志勇, 秦步坛, 徐赛俊, 付新露, 王小纯, 马新明. 基于GIS的河南省小麦产量及产量构成要素时空差异分析. 中国农业科学, 2022, 55: 692–706.

Xiong S P, Gao M, Zhang Z Y, Qin B T, Xu S J, Fu X L, Wang X C, Ma X M. Spatial and temporal difference analysis of wheat yield and yield components in Henan province based on GIS. Sci Agric Sin, 2022, 55: 692–706 (in Chinese with English abstract).

[23] 张俊灵, 闫金龙, 张东旭, 孙美荣, 常海霞. 北部冬麦区旱地小麦品种的演变规律. 麦类作物学报, 2017, 37: 1017–1024.

Zhang J L, Yan J L, Zhang D X, Sun M R, Chang H X. Evolution rule of wheat varieties in dryland of Northern winter wheat zone. J Triticeae Crops, 2017, 37: 1017–1024 (in Chinese with English abstract).

[24] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81–93.

Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81–93 (in Chinese with English abstract).

[25] 郑立飞, 尚一斐, 李学军, 冯浩, 魏永胜. 结构方程模型在冬小麦农艺性状与产量关系分析中的应用. 作物学报, 2017, 43: 1395–1400.

Zheng L F, Shang Y F, Li X J, Feng H, Wei Y S. Structural equation model for analyzing relationship between yield and agronomic traits in winter wheat. Acta Agron Sin, 2017, 43: 1395–1400 (in Chinese with English abstract).

[26] 胡学旭王步军. 北部冬麦区和黄淮冬麦区小麦区试品种品质改良现状及建议. 中国种业, 2016, 11(11):14–16.

Hu X X, Wang B J. Current status and suggestions for quality improvement of wheat varieties in Northern Winter Wheat Regions and Huang–Huai Winter Wheat Regions. China Seed Ind, 2016, 11(11): 14–16 (in Chinese with English abstract).

[27] 马小飞, 李竹梅, 王敏, 曹勇, 李晓丽, 姜兰芳, 郝建宇, 张定一, 姬虎太. 山西省近二十年审定小麦品种的农艺和品质性状变化. 麦类作物学报, 2020, 40: 938–944.

Ma X F, Li Z M, Wang M, Cao Y, Li X L, Jiang L F, Hao J Y, Zhang D Y, Ji H T. Variance of agronomic and quality traits of wheat cultivars released in Shanxi Province in the last two decades. J Triticeae Crops, 2020, 40: 938–944 (in Chinese with English abstract).

[28] Zhang T Y, He Y, DePauw R, Jin Z N, Garvin D, Yue X, Anderson W, Li T, Dong X, Zhang T, et al. Climate change may outpace current wheat breeding yield improvements in North America. Nat Commun, 2022, 13: 5591.

[29] Duncan E G, O’Sullivan C A, Roper M M, Biggs J S, Peoples M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: review. Field Crops Res, 2018, 226: 56–65.

[30] 马雪晴, 和骅芸, 赵金媛, 方彤, 张建珍, 潘学标, 潘志华, 王靖, 胡琦. 1961—2020年中国小麦生长季干湿时空变化分析. 中国生态农业学报(中英文), 2023, 31: 608–618.

Ma X Q, He H Y, Zhao J Y, Fang T, Zhang J Z, Pan X B, Pan Z H, Wang J, Hu Q. Spatiotemporal variation of dry–wet climate during wheat growing seasons from 1961 to 2020 in China. Chin J Eco-Agric, 2023, 31: 608−618 (in Chinese with English abstract).

[31] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39: 682–691.

Jiang J, Jiang Y, Wang S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. J Triticeae Crops, 2019, 39: 682–691 (in Chinese with English abstract).

[32] 黄晓荣, 甘斌杰, 夏孝群, 赵小庆, 张力, 刘立龙, 马世杰, 李世祥, 陈阁阁. 安徽省春性小麦区试品系主要品质性状分析. 麦类作物学报, 2023, 43: 582–590.

Huang X R, Gan B J, Xia X Q, Zhao X Q, Zhang L, Liu L L, Ma S J, Li S X, Chen G G. Analysis of main quality traits of spring wheat lines tested in official trials in Anhui Province. J Triticeae Crops, 2023, 43: 582–590 (in Chinese with English abstract).

[1] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[2] 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109.
[3] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[4] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[5] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[6] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[7] 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872.
[8] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[9] 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822.
[10] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[11] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[12] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[13] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[14] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[15] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!