欢迎访问作物学报,今天是

作物学报

• •    

小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定

高梦娟,赵贺莹,陈家辉,陈晓倩,牛萌康,钱琪润,崔陆飞,邢江敏,银庆淼,郭雯,张宁,孙丛苇,阳  霞,裴丹,贾奥琳,陈锋,余晓东*,任妍*   

  1. 河南农业大学农学院 / 小麦玉米两熟高效生产全国重点实验室,河南郑州 450046
  • 收稿日期:2025-01-17 修回日期:2025-04-27 接受日期:2025-04-27 网络出版日期:2025-05-13
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1201504),河南省重大科技专项(201100110100),河南省科技研发计划联合基金项目(242103810020)和中国博士后科学基金项目(2023M741068)资助。

Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat

GAO Meng-Juan,ZHAO He-Ying,CHEN Jia-Hui,CHEN Xiao-Qian,NIU Meng-Kang,QIAN Qi-Run,CUI Lu-Fei,XING Jiang-Min,YIN Qing-Miao,GUO Wen,ZHANG Ning SUN Cong-Wei,YANG Xia,PEI Dan,JIA Ao-Lin,CHEN Feng,YU Xiao-Dong*,REN Yan*   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Zhengzhou 450046, Henan, China
  • Received:2025-01-17 Revised:2025-04-27 Accepted:2025-04-27 Published online:2025-05-13
  • Supported by:
    This study was supported by the National Key Research and Development Program (2022YFD1201504), the Henan Major Science and Technology Project (201100110100), the Science and Technology R & D Plan Joint Fund of Henan Province (242103810020), and the China Postdoctoral Science Foundation (2023M741068).

摘要:

由禾谷丝核菌(Rhizoctonia cerealis)引起的小麦纹枯病是我国小麦生产上极具破坏性的土传性病害,严重影响小麦高产和稳产。选育和种植抗病品种是防治该病害最为经济有效和绿色环保的途径之一,而纹枯病抗性基因挖掘是培育抗性品种的重要基础。本研究收集了349黄淮麦区小麦种质并将其种植于河南农业大学小麦分子育种创新团队人工气候室进行纹枯病表型鉴定,利用小麦660K SNP芯片对其进行基因型分析,采用混合线性模型的方法对其进行全基因组关联分析(genome-wide association study, GWAS),在小麦5A染色体短臂上挖掘到1个新的抗小麦纹枯病QTL位点,命名为Qse.hnau-5AS,其中15个显著性SNP集中在960.6 kb区段内。根据中国春高质量基因组信息,Qse.hnau-5AS区段内共包含13个高可信度(high-confidence, HC)注释基因。结合病原菌诱导和组织特异性表达分析,推测其中1个编码刺猬互作蛋白类似蛋白基因(TaHIPL)1个编码质膜ATP酶基因(TaHA)可能参与调控小麦纹枯病抗性。利用病毒介导基因沉默(virus-induced gene silencing, VIGS)技术对上述2个抗纹枯病候选基因进行功能验证。接种病毒14 d后,qRT-PCR结果显示,VIGS沉默植株中TaHIPLTaHA基因表达水平显著下调,表明2个基因均被有效沉默。表型鉴定发现,与对照相比,VIGS沉默植株的病情指数(disease index, DI)较对照显著或极显著增加,植株更感纹枯病。综上所述,TaHIPLTaHA很可能是Qse.hnau-5AS的候选基因且可正调控小麦纹枯病抗性。本研究为小麦抗纹枯病分子机制的解析及抗病育种提供了新的基因和材料资源。

关键词: 小麦, 纹枯病, 苗期抗性, 全基因组关联分析, 病毒介导的基因沉默

Abstract:

Sharp eyespot, caused by Rhizoctonia cerealis, is a destructive soil-borne disease that poses a serious threat to wheat production in China, significantly affecting yield stability and productivity. Breeding and deploying resistant varieties is one of the most economical, effective, and environmentally sustainable strategies for disease control. Identifying resistance genes is fundamental to the development of superior resistant varieties. In this study, 349 wheat varieties (or lines) from the Huang-Huai region of China were collected and evaluated for sharp eyespot resistance in an artificial climate chamber at the Wheat Molecular Breeding Innovation Center, Henan Agricultural University. Genotyping was performed using the wheat 660K SNP array. A genome-wide association study (GWAS) was conducted using a mixed linear model (MLM) approach, integrating phenotypic data to identify loci associated with resistance. A novel quantitative trait locus (QTL), designated Qse.hnau-5AS, was identified on the short arm of chromosome 5A. GWAS results revealed 15 significant SNPs clustered within a 960.6 kb genomic region. Haplotype analysis confirmed that this locus significantly enhances resistance to sharp eyespot. Within the Qse.hnau-5AS region, 13 high-confidence annotated genes were identified. Based on expression profiling and response to R. cerealis infection, two candidate genes were proposed: one encoding a Hedgehog-interacting-like protein (TaHIPL) and the other encoding a plasma membrane ATPase (TaHA). Functional validation using virus-induced gene silencing (VIGS) showed that silencing of TaHIPL and TaHA resulted in significant downregulation of gene expression (confirmed by qRT-PCR) and a marked increase in disease index (DI) compared to control plants. These findings indicate that TaHIPL and TaHA positively regulate resistance to sharp eyespot in wheat. This study provides valuable genetic resources for understanding the molecular mechanisms underlying sharp eyespot resistance and for advancing resistance breeding in wheat.

Key words: wheat, sharp eyespot, seedling-stage resistance, GWAS, VIGS

[1] Wu X J, Wang J C, Wu D, Jiang W, Gao Z F, Li D S, Wu R L, Gao D R, Zhang Y. Identification of new resistance loci against wheat sharp eyespot through genome-wide association study. Front Plant Sci, 2022, 13: 1056935.

[2] Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865–2878.

[3] 2024年小麦春季重大病虫害防控技术方案. [2024.12.8]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm.

Technical plan for the prevention and control of major diseases and pests of wheat in spring 2024. [2024.12.8]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm (in Chinese).

[4] Liu C Y, Guo W, Zhang Q F, Fu B S, Yang Z J, Sukumaran S, Cai J, Liu Y, Zhai W L, Wu X Y, et al. Genetic dissection of adult plant resistance to sharp eyespot using an updated genetic map of Niavt14 × Xuzhou25 winter wheat recombinant inbred line population. Plant Dis, 2021, 105: 997–1005.

[5] Guo Y, Du Z Y, Chen J, Zhang Z J. QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight. PLoS One, 2017, 12: e0174939.

[6] Wu X J, Cheng K, Zhao R H, Zang S J, Bie T D, Jiang Z N, Wu R L, Gao D R, Zhang B Q. Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633. Sci Rep, 2017, 7: 11799.

[7] Jiang Y J, Zhu F F, Cai S B, Wu J Z, Zhang Q F. Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 × Xuzhou 25. Czech J Genet Plant Breed, 2016, 52: 139–144.

[8] Su J, Zhao J J, Zhao S Q, Li M Y, Pang S Y, Kang Z S, Zhen W C, Chen S S, Chen F, Wang X D. Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Front Genet, 2021, 12: 699342.

[9] Ma J H, Ye M M, Liu Q Q, Yuan M, Zhang D J, Li C X, Zeng Q D, Wu J H, Han D J, Jiang L N. Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.). Front Plant Sci, 2023, 14: 1169858.

[10] Yao F J, Guan F N, Duan L Y, Long L, Tang H, Jiang Y F, Li H, Jiang Q T, Wang J R, Qi P F, et al. Genome-wide association analysis of stable stripe rust resistance loci in a Chinese wheat Landrace panel using the 660K SNP array. Front Plant Sci, 2021, 12: 783830.

[11] Liu S Y, Wang C Y, Gou J Y, Dong Y, Tian W F, Fu L P, Xiao Y G, Luo X M, He Z H, Xia X C, et al. Genome-wide association study of ferulic acid content using 90K and 660K SNP chips in wheat. J Cereal Sci, 2022, 106: 103498.

[12] Wu J H, Wang X T, Chen N, Yu R, Yu S Z, Wang Q L, Huang S, Wang H Y, Singh R P, Bhavani S, et al. Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis, 2020, 104: 1751–1762.

[13] 余蓬勃. 小麦纹枯病苗期抗性鉴定方法的改良及全基因组关联分析. 河南农业大学硕士学位论文, 河南郑州, 2019.
Yu P B. Improvement of Identification Method for Resistance to Wheat Sharp Eyespot and Genome-wide Association Analysis. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).

[14] Fernandez-Pozo N, Rosli H G, Martin G B, Mueller L A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant, 2015, 8: 486–488.

[15] 于寒松, 彭帅, 谢远红, 胡耀辉. 一种RNA提取试剂盒: TRIZOL的使用方法初探. 食品科学, 2005, 26(11): 39–42.
Yu H S, Peng S, Xie Y H, Hu Y H. Study on improvement of RNA isolating reagent kit: TRIZOL. Food Sci, 2005, 26(11): 39–42 (in Chinese with English abstract).

[16] 董恩妮, 梁青, 李利, 王林杰, 仲涛, 王永, 张红平. 实时荧光定量PCR内参基因的选择. 中国畜牧杂志, 2013, 49(11): 92–96.
Dong E N, Liang Q, Li L, Wang L J, Zhong T, Wang Y, Zhang H P. The selection of reference gene in real-time quantitative reverse transcription PCR. Chin J Anim Sci, 2013, 49(11): 92–96 (in Chinese).

[17] 韩天龙, 王敏, 李志明. QRT-PCR检测目的基因mRNA转录水平的应用. 安徽农业科学, 2011, 39: 18432–18434.
Han T L, Wang M, Li Z M. Application of QRT-PCR in the detection of mRNA transcription level. J Anhui Agric Sci, 2011, 39: 18432–18434 (in Chinese with English abstract).

[18] 吴凯朝, 黄诚梅, 李杨瑞, 杨丽涛, 吴建明. Trizol试剂法快速高效提取3种作物不同组织总RNA. 南方农业学报, 2012, 43: 1934–1939.
Wu K C, Huang C M, Li Y R, Yang L T, Wu J M. Fast and effective total RNA extraction from different tissues in 3 crops through the Trizol reagent method. J South Agric, 2012, 43: 1934–1939 (in Chinese with English abstract).

[19] McBeath J H, McBeath J. Environmental Change and Food Security in China. Duxford: Woodhead Publishing, 2010. pp 119–120.

[20] Ren Y, Yu P B, Wang Y, Hou W X, Yang X, Fan J L, Wu X H, Lv X L, Zhang N, Zhao L, et al. Development of a rapid approach for detecting sharp eyespot resistance in seedling-stage wheat and its application in Chinese wheat cultivars. Plant Dis, 2020, 104: 1662–1667.

[21] 任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTLSSR标记研究. 扬州大学学报(农业与生命科学版), 2004, 25(4): 16–19.
Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H X, Lu W Z. SSR markers linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ (Agric Life Sci Edn), 2004, 25(4): 16–19 (in Chinese with English abstract).

[22] 刘颖, 张巧凤, 付必胜, 蔡士宾, 蒋彦婕, 张志良, 邓渊钰, 吴纪中, 戴廷波. 小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析. 作物学报, 2015, 41: 16711681.

Liu Y, Zhang Q F, Fu B S, Cai S B, Jiang Y J, Zhang Z L, Deng Y Y, Wu J Z, Dai T B. Genetic diversity of wheat germplasm resistant to sharp eyespot and geno-typing of resistance loci using SSR markers. Acta Agron Sin, 2015, 41: 1671–1681 (in Chinese with English abstract).

[23] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354–1360.

[24] Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol, 2019, 19: 153.

[25] Liu J, Cobertera D C, Zemetra R S, Mundt C C. Identification of quantitative trait loci for resistance to wheat sharp eyespot in the Einstein × tubbs recombinant inbred line population. Plant Dis, 2023, 107: 820–825.

[26] 李於亭, 熊宏春, 郭会君, 赵林姝, 谢永盾, 古佳玉, 李慧园, 赵世荣, 丁玉萍, 方正武, 等.小麦抽穗期微效QTL精细定位与候选基因分析. 第二十届中国作物学会学术年会. 2023. 
Li Y T, Xiong H C, Guo H J, Zhao L S, Xie Y D, Gu J Y, Li H Y, Zhao S R, Ding Y P, Fang Z W, et al. Fine mapping of micro-effect QTLs at heading stage and analysis of candidate genes in wheat. The 20th Annual meeting of the Crop Science Society of China. 2023 (in Chinese).

[27] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, . 小麦茎秆性状的转录组测序及全基因组关联分析. 作物学报, 2024, 50: 2187–2206.
Yu H L, Wu W X, Pei X X, Liu X Y, Deng G W, Li X C, Zhen S C, Wang J S, Zhao Y T, Xu H X, et al. Transcriptome sequencing and genome-wide association study of wheat stem traits. Acta Agron Sin, 2024, 50: 2187–2206 (in Chinese with English abstract).

[28] Li M T, Guo P, Nan N, Ma A, Liu W X, Wang T J, Yun D J, Xu Z Y. Plasma membrane-localized H+-ATPase OsAHA3 functions in saline-alkaline stress tolerance in rice. Plant Cell Rep, 2023, 43: 9.

[29] Kim C Y, Park J Y, Choi G, Kim S, Vo K T X, Jeon J S, Kang S, Lee Y H. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol Plant Pathol, 2022, 23: 400–416.

[1] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[2] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[3] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[4] 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247.
[5] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[6] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[7] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[8] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[9] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[10] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[11] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[12] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[13] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
[14] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[15] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!