欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 586-5897.doi: 10.3724/SP.J.1006.2025.44112

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子SHMT基因家族全基因组鉴定与表达分析

郭冰1(), 秦家范3, 李娜1, 宋梦瑶1, 王黎明1, 李君霞2,*(), 马小倩1,*()   

  1. 1河南科技大学农学院, 河南洛阳 471023
    2河南省农业科学院粮食作物研究所, 河南郑州 450002
    3洛阳市农林科学院, 河南洛阳 471023
  • 收稿日期:2024-07-09 接受日期:2024-10-25 出版日期:2025-03-12 网络出版日期:2024-10-30
  • 通讯作者: *李君霞, E-mail: lijunxia@126.com; 马小倩, E-mail: maxq20210812@163.com
  • 作者简介:E-mail: 18317373922@163.com
  • 基金资助:
    河南省重点研发专项(231111110300);国家自然科学基金项目(32301841);河南省自然科学基金项目(242300421320);河南科技大学A类博士人才项目(13480103)

Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.)

GUO Bing1(), QIN Jia-Fan3, LI Na1, SONG Meng-Yao1, WANG Li-Ming1, LI Jun-Xia2,*(), MA Xiao-Qian1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471023, Henan, China
  • Received:2024-07-09 Accepted:2024-10-25 Published:2025-03-12 Published online:2024-10-30
  • Contact: *E-mail: lijunxia@126.com; E-mail: maxq20210812@163.com
  • Supported by:
    Henan Provincial Key Research and Development Project(231111110300);National Natural Science Foundation of China(32301841);National Natural Science Foundation of Henan Province(242300421320);Category A PhD Research Startup Foundation of Henan University of Science and Technology(13480103)

摘要:

丝氨酸羟甲基转移酶(SHMT)在作物中广泛存在, 参与作物碳代谢、光呼吸等途径, 在作物生长发育及抗逆胁迫中发挥重要作用, 但是目前关于谷子SHMT基因的研究较少。本研究在全基因组水平鉴定了谷子SHMT基因家族成员, 系统分析了SiSHMTs的基因结构、进化关系、染色体定位、物种间共线性、顺式作用元件、表达模式、优势单倍型等。结果表明, 谷子中共有5个SiSHMTs, 分子量在51.70~64.37 kD之间, 空间结构相近, 进化关系将其分为3组, 每组成员散落在各条染色体上。启动子顺式作用元件分析发现, 在启动子中包含多个光反应响应元件、厌氧响应元件、激素响应元件等作用元件。物种间共线性分析结果表明, SiSHMT3SiSHMT4与单子叶作物水稻、小麦、高粱、玉米存在共线性, SiSHMT3与水稻、小麦、玉米存在多个共线对。SiSHMT成员在谷子不同发育时期、不同组织中表达量不同, SiSHMT4表达量较高, 在穗发育过程持续高表达, 并受到干旱、盐和ABA的显著诱导。SiSHMT4单倍型分析显示, Hap1为优势单倍型, 在穗长、穗宽、穗重各表型中都显著优于其他单倍型。研究结果为挖掘谷子抗旱、耐盐新功能基因提供基因源, 为今后选择培育高产抗逆谷子新品种奠定理论基础。

关键词: 谷子, SHMTs, 基因家族, 生长发育, 非生物胁迫

Abstract:

Serine hydroxymethyltransferase (SHMT) is involved in carbon metabolism and photorespiration, and is widely present in crops, playing a critical role in growth, development, and stress resistance. However, the SHMT genes in foxtail millet are largely unexplored. In this study, we identified the members of the SiSHMT gene family at the whole-genome level and systematically analyzed their gene structures, evolutionary relationships, chromosomal localizations, interspecies collinearity, cis-acting elements, expression patterns, and dominant haplotypes. Our results revealed five SiSHMT members in foxtail millet, with molecular weights ranging from 51.70 to 64.37 kD, and similar spatial structures. Phylogenetic analysis classified these genes into three groups, with members distributed across different chromosomes. The analysis of cis-acting elements in the gene promoters indicated the presence of numerous photo-responsive elements, anaerobic response elements, hormone response elements, and other cis-acting elements. Interspecies collinearity analysis showed that SiSHMT3 and SiSHMT4 exhibited collinearity with their orthologous genes in monocot crops such as rice, wheat, sorghum, and maize, with SiSHMT3 displaying multiple collinear pairs with rice, wheat, and maize. The expression levels of SiSHMT family members varied across different developmental stages and tissues of foxtail millet. Notably, SiSHMT4 was highly expressed in developing panicles and was significantly induced by drought, salt, and ABA treatments. Haplotype analysis of SiSHMT4 revealed that Hap1 was the dominant haplotype, significantly outperforming other haplotypes in panicle length, width, and weight. These findings provide valuable gene resources for improving drought and salt tolerance in foxtail millet and lay a theoretical foundation for the breeding of high-yield, stress-resistant foxtail millet varieties in the future.

Key words: foxtail millet, SHMTs, gene family, growth and development, abiotic stress

表1

qRT-PCR引物"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
SiSHMT1 TGCGACATGGCTCATATCAGT TGTGGGTGGTAGTGGTAATCAC
SiSHMT2 GGCCCTCACAATCACCAGAT GCATTCGCCTTCACTTGCTTT
SiSHMT3 TGGCGCATATCAGTGGTCTTG CCCTGAGGTTCTTGTGAGTAGTTG
SiSHMT4 CTGAGGGTGCTGTGTATGACTA GGTTGTGAGGACCACCTTGTAG
SiSHMT5 AGGCGGGCCTCATAACCATAC GCTCTTGATAAGCTCGGTACTCT
SiActin7 AACATTGTGCTCAGCGGTGG TGGAAGGTGCTAAGGGAGGC

表2

SiSHMT基因家族成员的主要特征"

基因名称
Gene name
基因号
Gene ID
蛋白长度
Protein length
分子量Molecular weight (kD) 等电点
pI
不稳定指数Instability index 亲水性系数Hydropathicity 亚细胞定位Subcellular
localization
SiSHMT1 SETIT_021684mg 543 58.64 7.65 41.21 -0.160 线粒体
Mitochondrion
SiSHMT2 SETIT_001011mg 523 57.27 8.52 46.02 -0.231 线粒体
Mitochondrion
SiSHMT3 SETIT_000781mg 591 64.37 6.61 44.03 -0.391 细胞质
Cytoplasmic
SiSHMT4 SETIT_026132mg 471 51.70 7.15 40.61 -0.274 细胞质
Cytoplasmic
SiSHMT5 SETIT_035240mg 513 56.52 8.58 39.75 -0.245 线粒体
Mitochondrion

图1

谷子、拟南芥、水稻、小麦中SHMT基因家族成员系统发育进化树 SiSHMT: 谷子SHMT (红色五角星); AtSHMT: 拟南芥SHMT (蓝色四边形); OsSHMT: 水稻SHMT (黄色三角星); TaSHMT: 小麦SHMT (紫色圆形)。"

图2

SiSHMT基因家族成员的系统进化树、基因结构、结构域及Motif分析 A: SiSHMT系统发育树; B: 基因结构; C: 结构域; D: 保守基序。"

表3

SiSHMT基因家族成员的二级结构、三级结构"

基因名称
Gene name
α-螺旋
Alpha helix
(%)
延长链Extended strand (%) 不规则卷曲
Random coil (%)
二级结构要素的分布
Distribution of secondary structure elements
三维结构
Three-dimensional structure
SiSHMT1 45.30 9.76 44.94
SiSHMT2 40.15 9.75 50.10
SiSHMT3 39.93 11.17 48.90
SiSHMT4 46.50 11.89 41.61
SiSHMT5 45.03 12.09 42.88

图3

SiSHMT基因家族成员染色体定位 同一颜色的基因在进化关系中属于同一组。"

图4

谷子与水稻、小麦、高粱、玉米之间的共线性 灰色线: 全基因组内其他基因的共线性; 蓝色线: SHMT基因的共线性。"

附表1

物种间同源基因对选择压力分析"

同源基因对
Homologous gene pairs
非同义替换率
Ka
同义替换率
Ks
非同义替换/同义替换
Ka/Ks
有效长度
Effective length
平均S位点
Average S-sites
SiSHMT3-Os01t0874900-01 0.0622 0.6008 0.1036 1758 424.1667
SiSHMT3-Os05t0429000-01 0.1357 0.8855 0.1533 1677 406.5000
SiSHMT4-Os11t0455800-01 0.0285 0.4216 0.0677 1413 341.0833
SSiSHMT3-EES01843 0.0359 0.3310 0.1085 1770 429.7500
SiSHMT4-EES08452 0.0132 0.2161 0.0609 1413 340.8333
SiSHMT3-TraesCS3A02G385600.1 0.0581 0.5998 0.0969 1749 423.4167
SiSHMT3-TraesCS3B02G417800.1 0.0508 0.6013 0.0845 1545 370.7500
SiSHMT3-TraesCS3D02G378700.1 0.0567 0.5694 0.0995 1743 423.5833
SiSHMT4-Zm00001eb170020_T001 0.0113 0.2477 0.0456 1413 341.3333
SiSHMT3-Zm00001eb146170_T002 0.0392 0.3823 0.1024 1764 427.3333
SiSHMT3-Zm00001eb366470_T002 0.0511 0.3953 0.1293 1749 425.0000

图5

SiSHMT基因家族成员启始密码子上游2000 bp序列顺式作用元件"

图6

SiSHMT基因家族成员包含激素元件数量 ABA: 脱落酸; IAA: 生长素; GA: 赤霉素; MeJA: 茉莉酸甲酯; SA: 水杨酸。"

图7

SiSHMT基因家族成员表达模式分析 S: 苗期; B: 孕穗期; H: 抽穗期; SAM: 芽顶端分生组织; bf: 开花前; daf: 开花后天数。"

图8

SiSHMT基因家族成员非生物胁迫相对表达量 I: 干旱胁迫; II: 盐胁迫; III: 脱落酸胁迫; 横坐标: 处理时间; 纵坐标: 相对表达量。"

图9

SiSHMT4基因优势单倍型 A: SiSHMT4基因的单倍型; B: 不同单倍型位点, 右侧是单倍型包含样本数量。"

[1] Moreno J I, Martín R, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyl transferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
[2] Zhao X, Zeng Z D, Cao W J, Khan D, Ikram M, Yang K B, Chen L M, Li K Z. Co-overexpression of AtSHMT1 and AtFDH induces sugar synthesis and enhances the role of original pathways during formaldehyde metabolism in tobacco. Plant Sci, 2021, 305: 110829.
[3] McClung C R, Hsu M, Painter J E, Gagne J M, Karlsberg S D, Salomé P A. Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol, 2000, 123: 381-392.
doi: 10.1104/pp.123.1.381 pmid: 10806255
[4] Bauwe H, Kolukisaoglu U. Genetic manipulation of Glycine decarboxylation. J Exp Bot, 2003, 54: 1523-1535.
[5] Rojas C M, Senthil-Kumar M, Tzin V, Mysore K S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci, 2014, 5: 17.
doi: 10.3389/fpls.2014.00017 pmid: 24575102
[6] Igamberdiev A U, Kleczkowski L A. The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Front Plant Sci, 2018, 9: 318.
doi: 10.3389/fpls.2018.00318 pmid: 29593770
[7] Calise S J, Purich D L, Nguyen T, Saleem D A, Krueger C, Yin J D, Chan E K L. ‘Rod and ring’ formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway. J Cell Sci, 2016, 129: 3042-3052.
doi: 10.1242/jcs.183400 pmid: 27343244
[8] Zhang Y, Sun K H, Sandoval F J, Santiago K, Roje S. One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyl transferase. Biochem J, 2010, 430: 97-105.
doi: 10.1042/BJ20100566 pmid: 20518745
[9] Turner S R, Ireland R, Morgan C, Rawsthorne S. Identification and localization of multiple forms of serine hydroxymethyl transferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform. J Biol Chem, 1992, 267: 13528-13534.
pmid: 1618853
[10] Zhao G H, Li H, Liu W, Zhang W G, Zhang F, Liu Q, Jiao Q C. Preparation of optically active β-hydroxy-α-amino acid by immobilized Escherichia coli cells with serine hydroxymethyl transferase activity. Amino Acids, 2011, 40: 215-220.
[11] Bhuiyan N H, Liu W P, Liu G S, Selvaraj G, Wei Y D, King J. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol, 2007, 64: 305-318.
doi: 10.1007/s11103-007-9155-x pmid: 17406792
[12] Voll L M, Jamai A, Renné P, Voll H, McClung C R, Weber A P M. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol, 2006, 140: 59-66.
[13] Jamai A, Salomé P A, Schilling S H, Weber A P M, McClung C R. Arabidopsis photorespiratory serine hydroxymethyl transferase activity requires the mitochondrial accumulation of ferredoxin- dependent glutamate synthase. Plant Cell, 2009, 21: 595-606.
doi: 10.1105/tpc.108.063289 pmid: 19223513
[14] Liu Y P, Mauve C, Lamothe-Sibold M, Guérard F, Glab N, Hodges M, Jossier M. Photorespiratory serine hydroxymethyl transferase 1 activity impacts abiotic stress tolerance and stomatal closure. Plant Cell Environ, 2019, 42: 2567-2583.
[15] Wang D K, Liu H Q, Li S J, Zhai G W, Shao J F, Tao Y Z. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice. J Integr Plant Biol, 2015, 57: 745-756.
[16] Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N, Jain N, Mishra V, Maniraj R, Krishnamurthy S L, Sreevathsa R, Singh N K, Rai V. Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Front Plant Sci, 2019, 10: 217.
[17] Yan M Y, Pan T, Zhu Y, Jiang X K, Yu M Z, Wang R Q, Zhang F, Luo S, Bao X H, Chen Y, Zhang B L, Jing R N, Cheng Z J, Zhang X, Lei C L, Lin Q B, Zhu S S, Guo X P, Ren Y L, Wan J M. FLOURY ENDOSPERM20 encoding SHMT4 is required for rice endosperm development. Plant Biotechnol J, 2022, 20: 1438-1440.
[18] Yan M Y, Zhou Z Y, Feng J L, Bao X H, Jiang Z R, Dong Z W, Chai M J, Tan M, Li L B, Cao Y L, Ke Z B, Wu J C, Feng Z, Pan T. OsSHMT4 is required for synthesis of rice storage protein and storage organelle formation in endosperm cells. Plants (Basel), 2023, 13: 81.
[19] Fang C X, Zhang P L, Li L L, Yang L K, Mu D, Yan X, Li Z, Lin W X. Serine hydroxymethyl transferase localised in the endoplasmic reticulum plays a role in scavenging H2O2 to enhance rice chilling tolerance. BMC Plant Biol, 2020, 20: 236.
[20] Xiong E H, Dong G J, Chen F, Zhang C, Li S, Zhang Y L, Shohag J I, Yang X E, Zhou Y H, Qian Q, Wu L M, Yu Y C. Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Sci China Life Sci, 2021, 64: 720-738.
[21] Hu P, Song P W, Xu J, Wei Q C, Tao Y, Ren Y M, Yu Y A, Li D X, Hu H Y, Li C W. Genome-wide analysis of serine hydroxymethyl transferase genes in triticeae species reveals that TaSHMT3A-1 regulates fusarium head blight resistance in wheat. Front Plant Sci, 2022, 13: 847087.
[22] Liu H, Li N, Zhao Y, Kang G Z, Zhao Y H, Xu H W. Serine hydroxymethyl transferase (SHMT) gene family in wheat (Triticum aestivum L.): identification, evolution, and expression analysis. Agronomy, 2022, 12: 1346.
[23] Kito K, Tsutsumi K, Rai V, Theerawitaya C, Cha-Um S, Yamada- Kato N, Sakakibara S, Tanaka Y, Takabe T. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. Protoplasma, 2017, 254: 2305-2313.
doi: 10.1007/s00709-017-1127-7 pmid: 28550469
[24] Ma Z K, Yang X Y, Zhang C, Sun Y G, Jia X. Early millet use in West Liaohe area during early-middle Holocene. Sci China Earth Sci, 2016, 59: 1554-1561.
[25] Diao X M, James S, Jeffrey L B, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014, 1: 16.
doi: 10.15302/J-FASE-2014011
[26] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[27] Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem M A, Lightfoot D A, Hewezi T, Barakat A, Nguyen H T, Meksem K. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep, 2019, 9: 1506.
doi: 10.1038/s41598-018-37815-w pmid: 30728404
[28] 李童, 邓智超, 刘涛, 薛瑾, 李伟, 郭永峰. 烟草SHMT基因家族鉴定与非生物胁迫诱导表达分析. 分子植物育种, 网络首发[2024-01-03], https://link.cnki.net/urlid/46.1068.S.20240102.1407.008.
Li T, Deng Z C, Liu T, Xue J, Li W, Guo Y F. Identification of tobacco SHMT gene gamily and analysis of expression induced by abiotic stresses. Mol Plant Breed, Published online [2024-01-03], https://link.cnki.net/urlid/46.1068.S.20240102.1407.008 (in Chinese with English abstract).
[29] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, Zhi H, Jia G Q, Guo G G, Du H L, Diao X M. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant, 2024, 17: 219-222.
[30] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, Xia R. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733-1742.
[31] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[32] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458-D460.
doi: 10.1093/nar/gkaa937 pmid: 33104802
[33] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and Analysis Tools on the ExPASy Server//The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005. pp 571-607.
[34] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[35] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[36] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275.
[37] Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci, 2000, 25: 147-150.
doi: 10.1016/s0968-0004(99)01540-6 pmid: 10694887
[38] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303.
[39] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[40] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[41] Chao J T, Li Z Y, Sun Y H, Aluko O O, Wu X R, Wang Q, Liu G S. MG2C: a user-friendly online tool for drawing genetic maps. Mol Hortic, 2021, 1: 16.
doi: 10.1186/s43897-021-00020-x pmid: 37789491
[42] Tang S, Zhao Z Y, Liu X T, Sui Y, Zhang D D, Zhi H, Gao Y Z, Zhang H, Zhang L L, Wang Y N, Zhao M C, Li D D, Wang K, He Q, Zhang R L, Zhang W, Jia G Q, Tang W Q, Ye X G, Wu C Y, Diao X M. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257
[43] Rao X Y, Huang X L, Zhou Z C, Lin X. An improvement of the 2ˆ (-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath, 2013, 3: 71-85.
[44] Liu Z S, Pan X J, Wang C L, Yun F H, Huang D J, Yao Y D, Gao R, Ye F J, Liu X J, Liao W B. Genome-wide identification and expression analysis of serine hydroxymethyl transferase (SHMT) gene family in tomato (Solanum lycopersicum). PeerJ, 2022, 10: e12943.
[45] Gao R, Luo Y Y, Pan X J, Wang C L, Liao W B. Genome-wide identification of SHMT family genes in cucumber (Cucumis sativus L.) and functional analyses of CsSHMTs in response to hormones and abiotic stresses. 3 Biotech, 2022, 12: 305.
[46] 赵玉琪, 周志林, 唐君, 姚改芳, 胡康棣, 张华. 甘薯、番茄和拟南芥中丝氨酸羟甲基转移酶基因家族功能研究. 合肥工业大学学报(自然科学版), 2022, 45: 1705-1714.
Zhao Y Q, Zhou Z L, Tang J, Yao G F, Hu K D, Zhang H. Study on the function of serine hydroxymethyl transferase gene family in sweet potato, tomato and Arabidopsis. J Hefei Univ Technol (Nat Sci), 2022, 45: 1705-1714 (in Chinese with English abstract).
[47] 周广灿, 刘夏婷, 王博, 杜晶晶. 牡丹SHMT基因的鉴定与生物信息学分析. 菏泽学院学报, 2023, 45(5): 106-114.
Zhou G C, Liu X T, Wang B, Du J J. Identification and bioinformatics analysis of peony SHMT genes. J Heze Univ, 2023, 45(5): 106-114 (in Chinese with English abstract).
[48] Chłosta I, Kozieradzka-Kiszkurno M, Kwolek D, Marcińska I, Sieprawska A, Popielarska-Konieczna M. Exogenous abscisic acid impacts the development of isolated immature endosperm in bread wheat. Plant Cell Tissue Organ Cult PCTOC, 2021, 147: 599-610.
[49] Zuo R J, Zhang Y Y, Yang Y B, Wang C F, Zhi H, Zhang L L, Tang S, Guan Y N, Li S G, Cheng R H, Shang Z L, Jia G Q, Diao X M. Haplotype variation and KASP markers for SiPSY1: a key gene controlling yellow kernel pigmentation in foxtail millet. Crop J, 2023, 11: 1902-1911.
[50] Liang H K, He Q, Zhang H, Zhi H, Tang S, Wang H L, Meng Q, Jia G Q, Chang J H, Diao X M. Identification and haplotype analysis of SiCHLI: a gene for yellow-green seedling as morphological marker to accelerate foxtail millet (Setaria italica) hybrid breeding. Theor Appl Genet, 2023, 136: 24.
[1] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[2] 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67.
[3] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[4] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[5] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[6] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[7] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[8] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[9] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[10] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[11] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[12] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[13] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[14] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[15] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!