欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3155-3164.doi: 10.3724/SP.J.1006.2024.44054

• 研究简报 • 上一篇    

花生转录因子基因AhWRI1的克隆及表达分析

殷祥贞1(), 赵健鑫2, 郝翠翠2, 潘丽娟1, 陈娜1, 许静1, 姜骁1, 赵旭红1, 王恩琪2, 曹欢2, 禹山林1, 迟晓元1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2青岛科技大学海洋科学与生物工程学院, 山东青岛 266042
  • 收稿日期:2024-03-29 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-03
  • 通讯作者: *迟晓元, E-mail: chi000@126.com
  • 作者简介:E-mail: yinxiangzhen1985@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);山东省农业科学院农业科技创新工程项目(CXGC2023F20);山东省农业科学院农业科技创新工程项目(CXGC2024F20);广东省重点领域研发计划项目(2020B020219003);新疆维吾尔自治区重大科技专项(2022A02008-3);泰山学者工程专项, 山东省重点研发计划(农业良种工程)项目(2022LZGC007);山东省自然科学基金项目(ZR2021QC172);山东省自然科学基金项目(ZR2023QC146);山东省重点研发计划(乡村振兴科技创新提振行动计划)项目(2022TZXD0031)

Cloning and expression analysis of transcription factor AhWRI1s in peanut

YIN Xiang-Zhen1(), ZHAO Jian-Xin2, HAO Cui-Cui2, PAN Li-Juan1, CHEN Na1, XU Jing1, JIANG Xiao1, ZHAO Xu-Hong1, WANG En-Qi2, CAO Huan2, YU Shan-Lin1, CHI Xiao-Yuan1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-03-29 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-03
  • Contact: *E-mail: chi000@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2023F20);Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2024F20);Key-Area Research and Development Program of Guangdong Province(2020B020219003);Major Scientific and Technological Project in Xinjiang(2022A02008-3);Taishan Scholar Project Funding, the Research and Development Program of Shandong Province (the Improved Variety Engineering Project)(2022LZGC007);Natural Science Foundation of Shandong Province(ZR2021QC172);Natural Science Foundation of Shandong Province(ZR2023QC146);Key Research and Development Plan of Shandong Province (Action Plan to Boost Scientific and Technological Innovation in Rural Revitalization)(2022TZXD0031)

摘要:

花生是世界范围内广泛栽培的油料和经济作物之一, 由于其高油脂和高蛋白质含量, 已成为人们主要的油脂和蛋白质来源。随着世界对植物油需求的不断增加, 改良花生脂肪酸组成和提高油脂含量成为花生育种工作的重要内容。转录调控因子可调控油脂合成相关代谢途径中一系列基因的表达, 显著影响油脂合成和代谢。本研究从花生品种花育33号的叶片中克隆得到2个转录因子基因AhWRI1-1AhWRI1-2, AhWRI1-1的ORF为1101 bp, 编码366个氨基酸; AhWRI1-2的ORF为1128 bp, 编码375个氨基酸。生物信息学分析发现, AhWRI1-1和AhWRI1-2均含有2个AP2/EREBP结构域。利用qRT-PCR检测AhWRI1-1AhWRI1-2在不同组织中的表达模式发现, AhWRI1-1在种子中的表达量最高, 可能参与调节脂肪酸合成和油脂积累; AhWRI1-2在下胚轴中的表达量最高, 可能参与下胚轴的发育。此外, AhWRI1-1AhWRI1-2对非生物胁迫的响应存在差异, 表明AhWRI1-1AhWRI1-2非生物胁迫中的作用也存在差异。通过在酵母中的转录激活试验验证, AhWRI1-1和AhWRI1-2均具有转录激活活性。本研究为以后对AhWRI1-1和AhWRI1-2的功能进行深入研究奠定了基础。

关键词: 花生, AP2/EREBP转录因子, 非生物胁迫, 基因表达分析, 转录激活

Abstract:

Peanut is one of the widely cultivated oil and economic crops worldwide and has become a major source of oil and protein for humans due to its high oil and protein content. With the increasing global demand for vegetable oil, improving the fatty acid composition and increasing the lipid content of peanut seeds has become a top priority in peanut breeding. Transcriptional regulators can modulate the expression of a series of genes in metabolic pathways related to lipid synthesis, significantly affecting lipid synthesis and metabolism. In this study, two transcription factors, AhWRI1-1 and AhWRI1-2, were cloned from the leaves of Huayu 33. The ORF of AhWRI1-1 was 1101 bp, encoding 366 amino acids, and the ORF of AhWRI1-2 was 1128 bp, encoding 375 amino acids. Bioinformatics analysis revealed that both AhWRI1-1 and AhWRI1-2 contained two AP2/EREBP conserved domains. The expression patterns of AhWRI1-1 and AhWRI1-2 in different tissues were detected by qRT-PCR. The results showed that AhWRI1-1 had the highest expression in seeds, suggesting its involvement in the regulation of fatty acid synthesis and oil accumulation, while AhWRI1-2 had the highest expression in hypocotyls, indicating its role in hypocotyl development. Additionally, the differences in the responses of AhWRI1-1 and AhWRI1-2 to abiotic stresses suggested that these transcription factors may play different roles under such conditions. Transcriptional activation experiments in yeast showed that both AhWRI1-1 and AhWRI1-2 possess transcriptional activation activities. This study lays the foundation for future in-depth functional studies of AhWRI1-1 and AhWRI1-2.

Key words: peanut, AP2/EREBP transcription factor, abiotic stress, gene expression analysis, transcriptional activation

表1

PCR引物"

引物名称
Primer name
序列
Sequence (5′-3′)
AhWRI1-1-F ATGAAGAGGTCTCCTAATTCCTCT
AhWRI1-1-R TTAATAATTGGCATAGACATGCATATC
AhWRI1-2-F ATGGAAATGATGACAAAGAAA
AhWRI1-2-R TCACAGATAAGGGAGATTGC
qAhWRI1-1-F TGCCGAATTATCCGAGTT
qAhWRI1-1-R CAGCCATACACATAAGATTGAT
qAhWRI1-2-F TGAAGAGGAGTTGGATGTC
qAhWRI1-2-R TGTAGTGTTGGTAGTGGAAT

图1

AhWRI1-1 (a)和AhWRI1-2基因(b)的核苷酸与氨基酸序列"

图2

花生与其他植物WRI1蛋白的氨基酸序列比对 WRI1蛋白的2个AP2/EREBP结构域用横线标出。"

图3

AhWRI1-1和AhWRI1-2的基因结构"

图4

植物WRI1系统发育树"

图5

AhWRI1-1和AhWRI1-2基因在花生不同组织和种子不同发育时期的表达分析 a: AhWRI1-1在不同组织中的表达分析; b: AhWRI1-2在不同组织中的表达分析; c: AhWRI1-1在种子不同发育时期的表达分析; d: AhWRI1-1在种子不同发育时期的表达分析。将Actin11为内参基因。在a、b、c和d中, 分别将AhWRI1-1在种子中、AhWRI1-2在下胚轴中、AhWRI1-1在48 d的种子中、AhWRI1-2在12 d的种子中的表达量设置为1, 即分别将它们作为参考点。"

图6

AhWRI1-1 (a)和AhWRI1-2 (b)在非生物胁迫和激素处理条件下的表达分析 Actin11为内参基因, 分别将AhWRI1-1和AhWRI1-2在0 h的表达量设置为1, 即分别将它们作为参考点。ABA: 脱落酸; GA: 赤霉素; ET: 乙烯利; JA: 茉莉酸; SA: 水杨酸。"

图7

AhWRI1-1和AhWRI1-2转录激活活性分析"

[1] Pasupuleti J, Nigam S N, Pandey M K, Nagesh P, Varshney R K. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci, 2013, 4: 23.
doi: 10.3389/fpls.2013.00023 pmid: 23443056
[2] 姚云游, 乔玉兰. 花生功能成分及营养价值的研究进展. 中国油脂, 2005, 30(9): 31-33.
Yao Y Y, Qiao Y L. Advance in study on functional compositions and nutritive value of peanut. China Oils Fats, 2005, 30(9): 31-33 (in Chinese with English abstract).
[3] Latchman D S. Transcription factors: an overview. Int J Biochem Cell Biol, 1997, 29: 1305-1312.
[4] Yang Y Z, Kong Q, Lim A R Q, Lu S P, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: current understanding, applications, and perspectives. Plant Commun, 2022, 3: 100328.
[5] 李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展. 分子植物育种, 2016, 14: 2509-2518.
Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant. Mol Plant Breed, 2016, 14: 2509-2518 (in Chinese with English abstract).
[6] Focks N, Benning C. wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol, 1998, 118: 91-101.
doi: 10.1104/pp.118.1.91 pmid: 9733529
[7] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575-585.
doi: 10.1111/j.1365-313X.2004.02235.x pmid: 15500472
[8] Ma W, Kong Q, Grix M, Mantyla J J, Yang Y, Benning C, Ohlrogge J B. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis. Plant J, 2015, 83: 864-874.
[9] Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J, 2007, 50: 825-838.
[10] Sánchez R, González-Thuillier I, Venegas-Calerón M, Garcés R, Salas J J, Martínez-Force E. The sunflower WRINKLED1 transcription factor regulates fatty acid biosynthesis genes through an AW box binding sequence with a particular base bias. Plants (Basel), 2022, 11: 972.
[11] Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1 of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J, 2009, 60: 476-487.
[12] Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J, 2009, 60: 933-947.
[13] Sanjaya, Durrett T P, Weise S E, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J, 2011, 9: 874-883.
pmid: 22003502
[14] Snell P, Wilkinson M, Taylor G J, Hall S, Sharma S, Sirijovski N, Hansson M, Shewry P R, Hofvander P, Grimberg Å. Characterisation of grains and flour fractions from field grown transgenic oil-accumulating wheat expressing oat WRI1. Plants, 2022, 11: 889.
[15] Dash S, Cannon E K S, Kalberer S R, Farmer A D, Cannon S B. PeanutBase and other bioinformatic resources for peanut. In: Stalker H T, Wilson R F, eds. Peanuts Genetics, Processing, and Utilization. Urbana: AOCS Press, 2016. pp 241-252.
[16] Lalitha S. Primer premier 5. Biotech Softw Internet Rep, 2000, 1: 270-272.
[17] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy Server. In: Walker J M, eds. The Proteomics Protocols Handbook. NJ: Humana Press, 2005. pp 571-607.
[18] Hallgren J, Tsirigos K D, Pedersen M D, Armenteros J J A, Marcatili P, Nielsen H, Krogh A, Winther O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv, 2022, doi: https://doi.org/10.1101/2022.04.08.487609.
[19] Almagro Armenteros J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420-423.
doi: 10.1038/s41587-019-0036-z pmid: 30778233
[20] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[21] Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[22] Goodstein D M, Shu S Q, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178-D1186.
[23] Ma W, Kong Q, Arondel V, Kilaru A, Bates P D, Thrower N A, Benning C, Ohlrogge J B. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One, 2013, 8: e68887.
[24] To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell, 2012, 24: 5007-5023.
[25] Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon J P, Rouster J, Paul W, Rogowsky P M. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol, 2011, 156: 674-686.
doi: 10.1104/pp.111.173641 pmid: 21474435
[26] Chen L, Zheng Y H, Dong Z M, Meng F F, Sun X M, Fan X H, Zhang Y F, Wang M L, Wang S M. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation. Mol Genet Genomics, 2018, 293: 401-415.
doi: 10.1007/s00438-017-1393-2 pmid: 29138932
[27] Baud S, Bourrellier A B F, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. Plant J, 2010, 64: 291-303.
[28] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836-1847.
doi: 10.1104/pp.15.01236 pmid: 26419778
[29] Bryant G O, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell, 2003, 11: 1301-1309.
pmid: 12769853
[30] Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755
[1] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[2] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[3] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[4] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[5] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[6] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[7] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[8] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[9] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[10] 金欣欣, 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾. 花生种皮类黄酮物质的代谢组与转录组分析[J]. 作物学报, 2024, 50(12): 2950-2961.
[11] 赵维, 胡晓娜, 郑艳, 梁娜, 郑宾, 王笑笑, 汪江涛, 刘领, 付国占, 石兆勇, 焦念元. 玉米、花生根际土AMF群落特点及其对磷肥的响应[J]. 作物学报, 2024, 50(11): 2896-2907.
[12] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[13] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[14] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[15] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!