作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3155-3164.doi: 10.3724/SP.J.1006.2024.44054
• 研究简报 • 上一篇
殷祥贞1(), 赵健鑫2, 郝翠翠2, 潘丽娟1, 陈娜1, 许静1, 姜骁1, 赵旭红1, 王恩琪2, 曹欢2, 禹山林1, 迟晓元1,*()
YIN Xiang-Zhen1(), ZHAO Jian-Xin2, HAO Cui-Cui2, PAN Li-Juan1, CHEN Na1, XU Jing1, JIANG Xiao1, ZHAO Xu-Hong1, WANG En-Qi2, CAO Huan2, YU Shan-Lin1, CHI Xiao-Yuan1,*()
摘要:
花生是世界范围内广泛栽培的油料和经济作物之一, 由于其高油脂和高蛋白质含量, 已成为人们主要的油脂和蛋白质来源。随着世界对植物油需求的不断增加, 改良花生脂肪酸组成和提高油脂含量成为花生育种工作的重要内容。转录调控因子可调控油脂合成相关代谢途径中一系列基因的表达, 显著影响油脂合成和代谢。本研究从花生品种花育33号的叶片中克隆得到2个转录因子基因AhWRI1-1和AhWRI1-2, AhWRI1-1的ORF为1101 bp, 编码366个氨基酸; AhWRI1-2的ORF为1128 bp, 编码375个氨基酸。生物信息学分析发现, AhWRI1-1和AhWRI1-2均含有2个AP2/EREBP结构域。利用qRT-PCR检测AhWRI1-1和AhWRI1-2在不同组织中的表达模式发现, AhWRI1-1在种子中的表达量最高, 可能参与调节脂肪酸合成和油脂积累; AhWRI1-2在下胚轴中的表达量最高, 可能参与下胚轴的发育。此外, AhWRI1-1和AhWRI1-2对非生物胁迫的响应存在差异, 表明AhWRI1-1和AhWRI1-2非生物胁迫中的作用也存在差异。通过在酵母中的转录激活试验验证, AhWRI1-1和AhWRI1-2均具有转录激活活性。本研究为以后对AhWRI1-1和AhWRI1-2的功能进行深入研究奠定了基础。
[1] |
Pasupuleti J, Nigam S N, Pandey M K, Nagesh P, Varshney R K. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci, 2013, 4: 23.
doi: 10.3389/fpls.2013.00023 pmid: 23443056 |
[2] | 姚云游, 乔玉兰. 花生功能成分及营养价值的研究进展. 中国油脂, 2005, 30(9): 31-33. |
Yao Y Y, Qiao Y L. Advance in study on functional compositions and nutritive value of peanut. China Oils Fats, 2005, 30(9): 31-33 (in Chinese with English abstract). | |
[3] | Latchman D S. Transcription factors: an overview. Int J Biochem Cell Biol, 1997, 29: 1305-1312. |
[4] | Yang Y Z, Kong Q, Lim A R Q, Lu S P, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: current understanding, applications, and perspectives. Plant Commun, 2022, 3: 100328. |
[5] | 李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展. 分子植物育种, 2016, 14: 2509-2518. |
Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant. Mol Plant Breed, 2016, 14: 2509-2518 (in Chinese with English abstract). | |
[6] |
Focks N, Benning C. wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol, 1998, 118: 91-101.
doi: 10.1104/pp.118.1.91 pmid: 9733529 |
[7] |
Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575-585.
doi: 10.1111/j.1365-313X.2004.02235.x pmid: 15500472 |
[8] | Ma W, Kong Q, Grix M, Mantyla J J, Yang Y, Benning C, Ohlrogge J B. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis. Plant J, 2015, 83: 864-874. |
[9] | Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J, 2007, 50: 825-838. |
[10] | Sánchez R, González-Thuillier I, Venegas-Calerón M, Garcés R, Salas J J, Martínez-Force E. The sunflower WRINKLED1 transcription factor regulates fatty acid biosynthesis genes through an AW box binding sequence with a particular base bias. Plants (Basel), 2022, 11: 972. |
[11] | Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1 of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J, 2009, 60: 476-487. |
[12] | Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J, 2009, 60: 933-947. |
[13] |
Sanjaya, Durrett T P, Weise S E, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J, 2011, 9: 874-883.
pmid: 22003502 |
[14] | Snell P, Wilkinson M, Taylor G J, Hall S, Sharma S, Sirijovski N, Hansson M, Shewry P R, Hofvander P, Grimberg Å. Characterisation of grains and flour fractions from field grown transgenic oil-accumulating wheat expressing oat WRI1. Plants, 2022, 11: 889. |
[15] | Dash S, Cannon E K S, Kalberer S R, Farmer A D, Cannon S B. PeanutBase and other bioinformatic resources for peanut. In: Stalker H T, Wilson R F, eds. Peanuts Genetics, Processing, and Utilization. Urbana: AOCS Press, 2016. pp 241-252. |
[16] | Lalitha S. Primer premier 5. Biotech Softw Internet Rep, 2000, 1: 270-272. |
[17] | Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy Server. In: Walker J M, eds. The Proteomics Protocols Handbook. NJ: Humana Press, 2005. pp 571-607. |
[18] | Hallgren J, Tsirigos K D, Pedersen M D, Armenteros J J A, Marcatili P, Nielsen H, Krogh A, Winther O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv, 2022, doi: https://doi.org/10.1101/2022.04.08.487609. |
[19] |
Almagro Armenteros J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420-423.
doi: 10.1038/s41587-019-0036-z pmid: 30778233 |
[20] | Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419. |
[21] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
[22] | Goodstein D M, Shu S Q, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178-D1186. |
[23] | Ma W, Kong Q, Arondel V, Kilaru A, Bates P D, Thrower N A, Benning C, Ohlrogge J B. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One, 2013, 8: e68887. |
[24] | To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell, 2012, 24: 5007-5023. |
[25] |
Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon J P, Rouster J, Paul W, Rogowsky P M. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol, 2011, 156: 674-686.
doi: 10.1104/pp.111.173641 pmid: 21474435 |
[26] |
Chen L, Zheng Y H, Dong Z M, Meng F F, Sun X M, Fan X H, Zhang Y F, Wang M L, Wang S M. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation. Mol Genet Genomics, 2018, 293: 401-415.
doi: 10.1007/s00438-017-1393-2 pmid: 29138932 |
[27] | Baud S, Bourrellier A B F, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. Plant J, 2010, 64: 291-303. |
[28] |
Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836-1847.
doi: 10.1104/pp.15.01236 pmid: 26419778 |
[29] |
Bryant G O, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell, 2003, 11: 1301-1309.
pmid: 12769853 |
[30] |
Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[1] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[2] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[3] | 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121. |
[4] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[5] | 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854. |
[6] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[7] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[8] | 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980. |
[9] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[10] | 金欣欣, 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾. 花生种皮类黄酮物质的代谢组与转录组分析[J]. 作物学报, 2024, 50(12): 2950-2961. |
[11] | 赵维, 胡晓娜, 郑艳, 梁娜, 郑宾, 王笑笑, 汪江涛, 刘领, 付国占, 石兆勇, 焦念元. 玉米、花生根际土AMF群落特点及其对磷肥的响应[J]. 作物学报, 2024, 50(11): 2896-2907. |
[12] | 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41. |
[13] | 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504. |
[14] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[15] | 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384. |
|