作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2483-2492.doi: 10.3724/SP.J.1006.2024.31084
鲁宗辉1,2(), 司二静1,2, 叶霈颖1,2, 汪军成1,2, 姚立蓉1,2, 马小乐1,2, 李葆春1,3, 王化俊1,2, 尚勋武2, 孟亚雄1,2,*()
LU Zong-Hui1,2(), SI Er-Jing1,2, YE Pei-Yin1,2, WANG Jun-Cheng1,2, YAO Li-Rong1,2, MA Xiao-Le1,2, LI Bao-Chun1,3, WANG Hua-Jun1,2, SHANG Xun-Wu2, MENG Ya-Xiong1,2,*()
摘要:
利用高通量SNP芯片对238份不同来源的大麦种质资源进行基因型分析, 并测定2年的籽粒β-葡聚糖含量, 通过基于PCA模型的一般线性模型(general linear model, GLM)进行全基因组关联分析(genome-wide association study, GWAS)。 结果表明, 238份大麦材料的β-葡聚糖含量分布在1.23%~6.55%和1.79%~6.64%之间且均呈正态分布。GWAS分析共检测到19个显著的SNP标记, 分布在1H、2H、3H、4H和5H染色体上, 可解释表型变异的7.39%~10.29%。在显著关联的SNP位点上下游各300 kb范围内进行候选基因挖掘, 共寻找到37个基因, 基于前人研究和BLAST基因注释共筛选到4个最有可能与β-葡聚糖合成相关的候选基因, 在最显著SNP位点B1_1033963上游89 kb处找到候选基因HORVU.MOREX.r3.1HG0000140, 该基因可能是与β-葡聚糖合成过程紧密相关的基因。本研究可为大麦β-葡聚糖含量遗传改良提供理论指导与优异基因资源。
[1] | Nishantha M D C N, Zhao X, Jeewani D C, Bian J X, Nie X J, Song W N. Direct comparison of β-glucan content in wild and cultivated barley. Int J Food Prop, 2018, 21: 2218-2228. |
[2] |
田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析. 作物学报, 2023, 49: 1726-1732.
doi: 10.3724/SP.J.1006.2023.21043 |
Tian M, Liu X C, Pan J J, Liang L J, Dong L, Liu M C, Feng Z Y. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley. Acta Agron Sin, 2023, 49: 1726-1732 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21043 |
|
[3] | Teketa S, You T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N, Larroque O, Jobling S A. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J Exp Bot, 2012, 63: 381-392. |
[4] | 王蕾, 王悦, 严宗山, 李润喜, 谢忠清, 张自强, 张想平. 大麦籽粒淀粉和β-葡聚糖积累特性研究. 作物杂志, 2020, 2: 119-124. |
Wang L, Wang Y, Yan Z S, Li R X, Xie Z Q, Zhang Z Q, Zhang X P. The research of starch and β-glucan accumulating characteristics in grain of different barley varieties. Crops, 2020, 2: 119-124 (in Chinese with English abstract). | |
[5] | Markovic S M, Dukic N H, Knezevic D, Lekovic S V. Divergence of barley and oat varieties according to their content of β-glucan. J Serb Chem Soc, 2017, 82: 379-388. |
[6] | Lukinac J, Jukic M. Barley in the production of cereal-based products. Plants, 2022, 11: 3519. |
[7] | Shu X L, Rasmussen S K. Quantification of amylose amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci, 2014, 5: 197. |
[8] | Chutimanitsakun Y, Cuesta-Marcos A, Chao S, Corey A, Filichkin T, Fisk S, Kolding M, Meints B, Ong Y, Rey J I, Ross A, Hayes P. Application of marker assisted selection and genome-wide association scanning to the development of winter food barley germplasm resources. Plant Breed, 2013, 132: 563-570. |
[9] | Mohammadi M, Endelman J B, Nair S, Chao S, Jones S S, Muehlbauer G J, Ullrich S E, Baik B, Wise M L, Smith K P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed, 2014, 34: 1229-1243. |
[10] | Gyawali S, Otte M L, Chao S, Jilal A, Jacob D L, Amezrou R, Verma R P S. Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci, 2017, 77: 266-274. |
[11] | Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B, Waugh R. A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. Bmc Genom, 2014, 15: 907. |
[12] | Zhou L H, He T, Guo G M, Li J, Lu R J, Li Y B, Liu C H. Genome-wide identification of candidate genes associated with β-glucan traits in a hulled and hulless barley (Hordeum vulgare L.) population. Phyton Int J Exp Bot, 2020, 89: 987-997. |
[13] |
耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析. 作物学报, 2021, 47: 1205-1214.
doi: 10.3724/SP.J.1006.2021.01074 |
Geng L, Huang Y C, Li M D, Xie S G, Ye L Z, Zhang G P. Genome-wide association study of β-glucan content in barley grains. Acta Agron Sin, 2021, 47: 1205-1214 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01074 |
|
[14] | 司二静, 孟亚雄, 李葆春, 马小乐, 张宇, 王化俊. 大麦抗条纹病与SSR标记的关联分析. 植物保护学报, 2019, 46: 1073-1085. |
Si E J, Meng Y X, Li B C, Ma X L, Zhang Y, Wang H J. Association analysis between barley resistance to Pyrenophora graminea and SSR markers. J Plant Protect, 2019, 46: 1073-1085 (in Chinese with English abstract). | |
[15] | Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361. |
[16] | Kaur R, Sharma M, Ji X M, Xu M, Agyei D. Structural features, modification, and functionalities of beta-glucan. Fibers, 2020, 8: 1. |
[17] |
Garcia-Gimenez G, Russell J, Aubert M K, Fincher G B, Burton R A, Waugh R, Tucker K, Houston K. Barley grain (1,3; 1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep (UK), 2019, 9: 17250.
doi: 10.1038/s41598-019-53798-8 pmid: 31754200 |
[18] | Geng L, Li M D, Xie S G, Wu D Z, Ye L Z, Zhang G P. Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Mol Breed, 2021, 41: 6. |
[19] | Neumann K, Kobiljski B, Dencic S, Varshney R K, Borner A. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed, 2010, 27: 37-58. |
[20] |
Pasam R K, Sharma R, Malosetti M, Eeuwijk F A, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol, 2012, 12: 16.
doi: 10.1186/1471-2229-12-16 pmid: 22284310 |
[21] |
Wang M H, Jiang N, Jia T Y, Leach L, Cockram J, Comadran J, Shaw P, Waugh R, Luo Z W. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet, 2012, 124: 233-246.
doi: 10.1007/s00122-011-1697-2 pmid: 21915710 |
[22] | Buckeridge M S, Rayon C, Urbanowicz B, Tiné M A S, Carpita N C. Mixed linkage (1→3),(1→4)-β-D-glucans of grasses. Cereal Chem, 2004, 81: 115-127. |
[23] |
Burton R A, Collins H M, Kibble N A, Smith J A, Shirley N J, Jobling S A, Henderson M, Singh R R, Pettolino F, Wilson S M, Bird A R, Topping D L, Bacic A, Fincher G B. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol J, 2011, 9: 117-135.
doi: 10.1111/j.1467-7652.2010.00532.x pmid: 20497371 |
[24] | Burton R A, Jobling S A, Harvey A J, Shirley N J, Mather D E, Bacic A, Fincher G B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol, 2008, 146: 1821-1833. |
[25] |
Hrmova M, Farkas V, Lahnstein J, Fincher G B. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem, 2007, 282: 12951-12962.
doi: 10.1074/jbc.M611487200 pmid: 17329246 |
[26] |
Hrmova M, Fincher G B. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohyd Res, 2007, 342: 1613-1623.
pmid: 17548065 |
[27] |
Andrews D L, Beames B, Summers M D, Park W D. Characterization of the lipid acylhydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J, 1988, 252: 199-206.
pmid: 3048246 |
[28] | Garcia-Gimenez G, Schreiber M, Dimitroff G Z, Little A, Singh R R, Fincher G B, Burton R A, Waugh R, Tucker M R, Houston K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. Front Plant Sci, 2022, 13: 883139. |
[29] |
Casaretto J A, Ho T H D. Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Mol Biol, 2005, 57: 21-34.
doi: 10.1007/s11103-004-6520-x pmid: 15821866 |
[1] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[2] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[3] | 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718. |
[4] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[5] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[6] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[7] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[8] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[9] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[10] | 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514. |
[11] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[12] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[13] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[14] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[15] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
|