欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1198-1214.doi: 10.3724/SP.J.1006.2025.41053

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析

陆雯佳1,2,汪军成1,2,姚立蓉1,2,张宏1,2,司二静1,2,杨轲1,2,孟亚雄1,2,李葆春1,3,马小乐1,2,王化俊1,2,*   

  1. 1 省部共建干旱生境作物学国家重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070; 2 甘肃农业大学农学院, 甘肃兰州 730070; 3 甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2024-08-07 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05-03B-03), 陇原青年英才专项(LYYC-2024-02), 国家自然科学基金项目(30771331, 32160496), 甘肃省青年科技基金计划(20JR5RA010), 甘肃省教育厅创新基金(2021A-055), 甘肃省教育厅产业支撑计划(2021CYZC-12)项目, 甘肃农业大学伏羲青年英才计划(Ganfx-03Y06, Ganfx-04Y011), 甘肃省陇原青年英才(2023), 甘肃省科技重大专项(17ZD2NA016)和甘肃农业大学国家级大学生创新创业训练项目(202401040, 202401042, 202401053)资助。

Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley

LU Wen-Jia1,2, WANG Jun-Cheng1,2, YAO Li-Rong1,2, ZHANG Hong1,2, SI Er-Jing1,2, YANG Ke1,2, MENG Ya-Xiong1,2, LI Bao-Chun1,3, MA Xiao-Le1,2,WANG Hua-Jun1,2,*   

  1. 1 State Key Laboratory of Arid Habitat Crop Science / Gansu Provincial Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, Gansu, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-08-07 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Supported by:
    The study was supported by the China Agriculture Research System of MOF and MARA (CARS-05-03B-03), the Longyuan Youth Talent Project (LYYC-2024-02), the National Natural Science Foundation of China (30771331, 32160496), the Youth Science and Technology Fund of Gansu Province (20JR5RA010), Innovation Fund of Gansu Provincial Department of Education (2021A-055), the Industry Support Plan of Gansu Provincial Department of Education (2021CYZC-12), Fuxi Young Talents Program of Gansu Agricultural University (Ganfx-03Y06, Ganfx-04Y011), the Longyuan Young Talents of Gansu Province (2023), the Gansu Provincial Science and Technology Major Project (17ZD2NA016), and the National College Student Innovation and Entrepreneurship Training Project of Gansu Agricultural University (202401040, 202401042, 202401053).

摘要:

过氧化物酶(Class III peroxidase, PRX)基因家族在调控植物生长发育及非生物胁迫过程中发挥重要作用。大麦(Hordeum vulgare L.)是典型的C3植物,目前关于HvPRXs基因家族的功能研究鲜有报道。本研究通过生物信息学的方法对大麦PRX基因家族(HvPRXs)成员进行分析,探究其在20% PEG-6000胁迫下的表达模式。大麦全基因组中共鉴定出了178HvPRXs基因家族成员,并根据其在染色体上位置顺序依次命名为HvPRX1~HvPRX178。通过对大麦、水稻和拟南芥的过氧化物酶进行进化树分析将其分为5个亚家族,基因结构和Domain分析表明同一亚家族具有较高的保守性。基因复制分析显示,15HvPRX基因(8%)存在片段复制,34HvPRX基因(67%)存在串联复制,串联复制事件在HvPRX基因扩增中起重要作用。大麦与拟南芥的物种间共线性分析显示,大麦与拟南芥有4PRX直系同源基因对,说明基因从单子叶到双子叶进行了大规模的分子进化事件。转录组分析显示,HvPRXs基因家族成员在大麦根、叶中表达存在差异。启动子顺式作用元件分析显示,99HvPRXs含有与干旱胁迫响应相关的顺式作用元件。最后基于qRT-PCR分析其干旱胁迫下的表达特征,结果表明,HvPRX1HvPRX18HvPRX63HvPRX160HvPRX16720% PEG-6000诱导在3 h时表达量显著升高。本研究结果为全面探索HvPRXs基因的生物学功能、其调控大麦抗旱性的分子机制以及抗逆作物新品种的培育提供参考。

关键词: 大麦, PRX基因家族, 生信分析, 干旱胁迫

Abstract:

The Class III peroxidase (PRX) gene family plays a crucial role in regulating plant growth, development, and responses to abiotic stress. Barley (Hordeum vulgare L.), a typical C3 plant, has been relatively underexplored regarding the functional characterization of its HvPRX gene family. In this study, we performed a comprehensive analysis of HvPRX genes using bioinformatics tools and investigated their expression patterns under drought stress induced by 20% PEG-6000 treatment. A total of 178 HvPRX gene family members were identified in the barley genome and were named HvPRX1–HvPRX178 based on their chromosomal positions. Phylogenetic analysis grouped the peroxidases of barley, rice, and Arabidopsis into five subfamilies, indicating evolutionary conservation. Gene structure and domain analyses revealed high conservation within the same subfamilies. Gene duplication analysis showed that 15 HvPRX genes (8%) underwent segmental duplication, while 34 HvPRX genes (67%) arose from tandem duplication, highlighting the critical role of tandem duplication events in HvPRX gene expansion. Interspecies collinearity analysis between barley and Arabidopsis identified four direct orthologous PRX gene pairs, suggesting that large-scale molecular evolution events occurred during the divergence from monocotyledons to dicotyledons. Transcriptome analysis demonstrated that HvPRX gene expression patterns varied between barley roots and leaves. Promoter analysis revealed that 99 HvPRX genes contained cis-acting elements associated with drought stress responses. Finally, qRT-PCR analysis was used to validate the expression profiles of HvPRX genes under drought stress. The expression levels of HvPRX1, HvPRX18, HvPRX63, HvPRX160, and HvPRX167 were significantly upregulated three hours after treatment with 20% PEG-6000. These findings provide valuable insights into the biological functions and molecular mechanisms of HvPRX genes in barley's drought resistance. This study also lays a foundation for breeding stress-tolerant crop varieties.

Key words: barley, PRX gene family, bioinformatics analysis, drought stress

[1] Exposito-Rodriguez M, Laissue P P, Yvon-Durocher G, Smirnoff N, Mullineaux P M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun, 2017, 8: 49.

[2] Yadav M, Rai N, Yadav H S. The role of peroxidase in the enzymatic oxidation of phenolic compounds to quinones from Luffa aegyptiaca (gourd) fruit juice. Green Chem Lett Rev, 2017, 10: 154–161.

[3] Kidwai M, Ahmad I Z, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep, 2020, 39:13811393.

[4] Amaya I, Botella M A, de la Calle M, Medina M I, Heredia A, Bressan R A, Hasegawa P M, Quesada M A, Valpuesta V. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett, 1999, 457: 80–84.

[5] Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci, 2004, 9: 534–540.

[6] Bernards M A, Fleming W D, Llewellyn D B, Priefer R, Yang X, Sabatino A, Plourde G L. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol, 1999, 121: 135–146.

[7] Pandey V P, Singh S, Singh R, Dwivedi U N. Purification and characterization of peroxidase from Papaya (Carica papaya) fruit. Appl Biochem Biotechnol, 2012, 167: 367–376.

[8] Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder K G, Mundy J, Gajhede M, Henriksen A. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol, 2000, 44: 231–243.

[9] Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot, 2015, 115: 1053–1074.

[10] Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58–65.

[11] Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129–138.

[12] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879–1893.

[13] 马鑫磊许瑞琪索晓曼李婧实顾鹏鹏姚锐林小虎高慧. 谷子PRX基因家族全基因组鉴定及干旱胁迫下表达分析. 作物学报, 2022, 48: 2517–2532.

    Ma X L, Xu R Q, Suo X M, Li J S, Gu P P, Yao R, Lin X H, Gao H. Genome-wide identification of the Class Ⅲ PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress. Acta Agron Sin, 2022, 48: 2517–2532 (in Chinese with English abstract). 

[14] Yan J, Su P S, Li W, Xiao G L, Zhao Y, Ma X, Wang H W, Nevo E, Kong L R. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666.

[15] Wang Y, Wang Q Q, Zhao Y, Han G M, Zhu S W. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95108.

[16] Gabaldón C, López-Serrano M, Pedreño M A, Barceló A R. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol, 2005, 139: 1138–1154.

[17] Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño M Á, Cuello J, Guéra A, Esteban-Carrasco A, Zapata J M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 2013, 237: 1599–1612.

[18] Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell physiol, 2001,42: 462468.

[19]  Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics, 2009, 36: 141–150.

[20] Mika A, Buck F, Lüthje S. Membrane-bound class III peroxidases: identification, biochemical properties and sequence analysis of isoenzymes purified from maize (Zea mays L.) roots. J Proteomics, 2009, 71: 412–424.

[21] Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404–2419. 

[22] Cao Y P, Han Y H, Meng D D, Li D H, Jin Q, Lin Y, Cai Y P. Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Front Plant Sci, 2016, 7: 1874.

[23] Xie Z H, Rui W K, Yuan Y Z, Song X F, Liu X, Gong X, Bao J P, Zhang S L, Shahrokh K, Tao S T. Analysis of PRX gene family and its function on cell lignification in pears (Pyrus bretschneideri). Plants, 2021, 10:1874.

[24] Onele A, Mazina A, Leksin I, Chasov A, Minibayeva F, Beckett R. Class III peroxidase genes in the moss Dicranum scoparium: identification and abiotic stress induced expression analysis. S Afr N J Bot, 2023, 159: 72–84.

[25] Ellis R P, Forster B P, Robinson D, Handley L L, Gordon D C, Russell J R, Powell W. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot, 2000, 51: 9–17.

[26] Bornare S S, Prasad L C, Prasad R, Lal J P. Perspective of barley drought tolerance; methods and mechanisms comparable to other cereals. J Progressive Agric, 2012, 3: 6870. 

[27] George T S, Brown L K, Ramsay L, White P J, Newton A C, Bengough A G, Russell J, Thomas W T B. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol, 2014, 203:195205.

[28] Baik B K, Ullrich S E. Barley for food: Characteristics, improvement, and renewed interest. J Cereal Sci, 2008, 48: 233–242.

[29] 马小英,贾方兴,赵颖岚,赵杰才. 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选. 分子植物育种, 2016, 14: 30933101.

    Ma X Y, Jia F X, Zhao Y L, Zhao J C. Reference genes screening for quantitative real-time PCR in barley under drought and salt stress. Mol Plant Breed, 2016,14: 30933101 (in Chinese with English abstract).

[30] Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245256.

[31] Yang X, Yuan J Z, Luo W B, Qin M Y, Yang J H, Wu W R, Xie X F. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577.

[32] Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interKingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512–1517.

[33] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.

[34] Harris R M, Hofmann H A. Seeing is believing: Dynamic evolution of gene families. Proc Natl Acad Sci USA, 2015, 112: 1252–1253

[1] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[2] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[3] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[4] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[5] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[6] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[7] 孙曼, 安朝丹, 高广奇, 郭杰, 杨平, 蒋枞璁. 大麦稃壳白化突变性状的遗传解析[J]. 作物学报, 2024, 50(12): 3046-3054.
[8] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[9] 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514.
[10] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[11] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[12] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[13] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[14] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[15] 张艳艳, 关涵文, 刘淋茹, 贺利, 段剑钊, 王晨阳, 郭天财, 冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753-2765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .