作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1198-1214.doi: 10.3724/SP.J.1006.2025.41053
陆雯佳1,2(), 汪军成1,2, 姚立蓉1,2, 张宏1,2, 司二静1,2, 杨轲1,2, 孟亚雄1,2, 李葆春1,3, 马小乐1,2, 王化俊1,2,*(
)
LU Wen-Jia1,2(), WANG Jun-Cheng1,2, YAO Li-Rong1,2, ZHANG Hong1,2, SI Er-Jing1,2, YANG Ke1,2, MENG Ya-Xiong1,2, LI Bao-Chun1,3, MA Xiao-Le1,2, WANG Hua-Jun1,2,*(
)
摘要:
过氧化物酶(Class III peroxidase, PRX)基因家族在调控植物生长发育及非生物胁迫过程中发挥重要作用。大麦(Hordeum vulgare L.)是典型的C3植物, 目前关于HvPRXs基因家族的功能研究鲜有报道。本研究通过生物信息学的方法对大麦PRX基因家族(HvPRXs)成员进行了分析, 探究其在20% PEG-6000胁迫下的表达模式。大麦全基因组中共鉴定出了178个HvPRXs基因家族成员, 并根据其在染色体上位置顺序依次命名为HvPRX1~HvPRX178。通过对大麦、水稻和拟南芥的过氧化物酶进行进化树分析将其分为5个亚家族, 基因结构和Domain分析表明同一亚家族具有较高的保守性。基因复制分析显示, 15个HvPRX基因(8%)存在片段复制, 34个HvPRX基因(67%)存在串联复制, 串联复制事件在HvPRX基因扩增中起重要作用。大麦与拟南芥的物种间共线性分析显示, 大麦与拟南芥有4个PRX直系同源基因对, 说明基因从单子叶到双子叶进行了大规模的分子进化事件。转录组分析显示, HvPRXs基因家族成员在大麦根、叶中表达存在差异。启动子顺式作用元件分析显示, 99个HvPRXs含有与干旱胁迫响应相关的顺式作用元件。最后基于qRT-PCR分析其干旱胁迫下的表达特征, 结果表明, HvPRX1、HvPRX18、HvPRX63、HvPRX160和HvPRX167受20% PEG-6000诱导在3 h表达量显著升高。本研究结果为全面探索HvPRXs基因的生物学功能、其调控大麦抗旱性的分子机制以及抗逆作物新品种的培育提供参考。
[1] |
Exposito-Rodriguez M, Laissue P P, Yvon-Durocher G, Smirnoff N, Mullineaux P M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun, 2017, 8: 49.
doi: 10.1038/s41467-017-00074-w pmid: 28663550 |
[2] | Yadav M, Rai N, Yadav H S. The role of peroxidase in the enzymatic oxidation of phenolic compounds to quinones from Luffa aegyptiaca (gourd) fruit juice. Green Chem Lett Rev, 2017, 10: 154-161. |
[3] | Kidwai M, Ahmad I Z, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep, 2020, 39: 1381-1393. |
[4] |
Amaya I, Botella M A, de la Calle M, Medina M I, Heredia A, Bressan R A, Hasegawa P M, Quesada M A, Valpuesta V. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett, 1999, 457: 80-84.
doi: 10.1016/s0014-5793(99)01011-x pmid: 10486568 |
[5] |
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci, 2004, 9: 534-540.
doi: 10.1016/j.tplants.2004.09.002 pmid: 15501178 |
[6] |
Bernards M A, Fleming W D, Llewellyn D B, Priefer R, Yang X, Sabatino A, Plourde G L. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol, 1999, 121: 135-146.
doi: 10.1104/pp.121.1.135 pmid: 10482668 |
[7] |
Pandey V P, Singh S, Singh R, Dwivedi U N. Purification and characterization of peroxidase from Papaya (Carica papaya) fruit. Appl Biochem Biotechnol, 2012, 167: 367-376.
doi: 10.1007/s12010-012-9672-1 pmid: 22552804 |
[8] |
Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder K G, Mundy J, Gajhede M, Henriksen A. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol, 2000, 44: 231-243.
pmid: 11117266 |
[9] | Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot, 2015, 115: 1053-1074. |
[10] |
Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58-65.
doi: 10.1016/j.abb.2010.04.007 pmid: 20398621 |
[11] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
doi: 10.1016/s0378-1119(02)00465-1 pmid: 12034502 |
[12] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994 |
[13] |
马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析. 作物学报, 2022, 48: 2517-2532.
doi: 10.3724/SP.J.1006.2022.14185 |
Ma X L, Xu R Q, Suo X M, Li J S, Gu P P, Yao R, Lin X H, Gao H. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress. Acta Agron Sin, 2022, 48: 2517-2532 (in Chinese with English abstract). | |
[14] |
Yan J, Su P S, Li W, Xiao G L, Zhao Y, Ma X, Wang H W, Nevo E, Kong L R. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666.
doi: 10.1186/s12864-019-6006-5 pmid: 31438842 |
[15] |
Wang Y, Wang Q Q, Zhao Y, Han G M, Zhu S W. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[16] |
Gabaldón C, López-Serrano M, Pedreño M A, Barceló A R. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol, 2005, 139: 1138-1154.
pmid: 16258008 |
[17] | Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño M Á, Cuello J, Guéra A, Esteban-Carrasco A, Zapata J M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 2013, 237: 1599-1612. |
[18] | Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001,42: 462-468. |
[19] |
Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics, 2009, 36: 141-150.
doi: 10.1016/S1673-8527(08)60101-0 pmid: 19302970 |
[20] | Mika A, Buck F, Lüthje S. Membrane-bound class III peroxidases: identification, biochemical properties and sequence analysis of isoenzymes purified from maize (Zea mays L.) roots. J Proteomics, 2009, 71: 412-424. |
[21] | Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419. |
[22] | Cao Y P, Han Y H, Meng D D, Li D H, Jin Q, Lin Y, Cai Y P. Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Front Plant Sci, 2016, 7: 1874. |
[23] | Xie Z H, Rui W K, Yuan Y Z, Song X F, Liu X, Gong X, Bao J P, Zhang S L, Shahrokh K, Tao S T. Analysis of PRX gene family and its function on cell lignification in pears (Pyrus bretschneideri). Plants, 2021, 10: 1874. |
[24] | Onele A, Mazina A, Leksin I, Chasov A, Minibayeva F, Beckett R. Class III peroxidase genes in the moss Dicranum scoparium: identification and abiotic stress induced expression analysis. S Afr N J Bot, 2023, 159: 72-84. |
[25] |
Ellis R P, Forster B P, Robinson D, Handley L L, Gordon D C, Russell J R, Powell W. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot, 2000, 51: 9-17.
pmid: 10938791 |
[26] | Bornare S S, Prasad L C, Prasad R, Lal J P. Perspective of barley drought tolerance; methods and mechanisms comparable to other cereals. J Progressive Agric, 2012, 3: 68-70. |
[27] |
George T S, Brown L K, Ramsay L, White P J, Newton A C, Bengough A G, Russell J, Thomas W T B. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol, 2014, 203: 195-205.
doi: 10.1111/nph.12786 pmid: 24684319 |
[28] | Baik B K, Ullrich S E. Barley for food: Characteristics, improvement, and renewed interest. J Cereal Sci, 2008, 48: 233-242. |
[29] | 马小英, 贾方兴, 赵颖岚, 赵杰才. 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选. 分子植物育种, 2016, 14: 3093-3101. |
Ma X Y, Jia F X, Zhao Y L, Zhao J C. Reference genes screening for quantitative real-time PCR in barley under drought and salt stress. Mol Plant Breed, 2016, 14: 3093-3101 (in Chinese with English abstract). | |
[30] | Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245-256. |
[31] | Yang X, Yuan J Z, Luo W B, Qin M Y, Yang J H, Wu W R, Xie X F. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577. |
[32] |
Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interKingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953 |
[33] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
pmid: 15171794 |
[34] |
Harris R M, Hofmann H A. Seeing is believing: Dynamic evolution of gene families. Proc Natl Acad Sci USA, 2015, 112: 1252-1253.
doi: 10.1073/pnas.1423685112 pmid: 25624486 |
[1] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
[2] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
[3] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[4] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[5] | 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761. |
[6] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[7] | 孙曼, 安朝丹, 高广奇, 郭杰, 杨平, 蒋枞璁. 大麦稃壳白化突变性状的遗传解析[J]. 作物学报, 2024, 50(12): 3046-3054. |
[8] | 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492. |
[9] | 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514. |
[10] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[11] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[12] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[13] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[14] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[15] | 张艳艳, 关涵文, 刘淋茹, 贺利, 段剑钊, 王晨阳, 郭天财, 冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753-2765. |
|