欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3055-3068.doi: 10.3724/SP.J.1006.2024.42014

• 耕作栽培·生理生化 • 上一篇    下一篇

低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系

郑广杰1(), 叶昌1, 徐春梅1, 陈松1, 褚光1, 陈里鹏2, 章秀福1, 王丹英1,*()   

  1. 1中国水稻研究所 / 水稻生物学国家重点实验室, 浙江杭州 311400
    2杭州富阳栋山农机服务专业合作社, 浙江杭州 311400
  • 收稿日期:2024-03-08 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-02
  • 通讯作者: *王丹英, E-mail: wangdanying@caas.cn
  • 作者简介:E-mail: 981958946@qq.com
  • 基金资助:
    浙江省“尖兵”研发攻关计划课题(2023C02002-3-2);财政部和农业农村部国家现代农业产业技术体系建设专项(水稻, CARS-01-31);中国农业科学院科技创新工程项目(ASTIP)

Effect of low-temperature stress on glucose and water status in rice germ and its relationship with seedling emergence

ZHENG Guang-Jie1(), YE Chang1, XU Chun-Mei1, CHEN Song1, CHU Guang1, CHEN Li-Peng2, ZHANG Xiu-Fu1, WANG Dan-Ying1,*()   

  1. 1China National Rice Research Institute / State Key Laboratory of Rice Biology and Breeding, Hangzhou 311400, Zhejiang, China
    2Hangzhou Fuyang Dongshan Agricultural Machinery Service Specialized Co-operative Society, Hangzhou 311400, Zhejiang, China
  • Received:2024-03-08 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-02
  • Contact: *E-mail: wangdanying@caas.cn
  • Supported by:
    ‘Sharp Soldiers’ Research and Development Programs of Zhejiang(2023C02002-3-2);China Agriculture Research System of MOF and MARA (Rice, CARS-01-31);Agricultural Science and Technology Innovation Project(ASTIP)

摘要:

为了探明低温逆境下水稻种子出苗成活的品种间差异, 解析水稻芽苗期耐低温机理, 本研究以4个低温耐性不同的品种为试验材料, 设置低温和常温2个处理, 分析了水稻出苗过程中种子和胚芽组织的碳水化合物含量、含水量, 种子的α-淀粉酶、胚芽蔗糖合酶和抗氧化酶活性, 胚芽的过氧化氢与丙二醛含量随时间的变化, 及其与胚芽存活率的相关性。研究发现, 低温下冷敏感品种中嘉8号(S1)、中嘉早17 (S2)胚芽的葡萄糖含量、抗氧化酶(SOD、POD、CAT)比蛋白活性在低温4 d后显著下降, 而H2O2、MDA含量逐渐增加, 其胚芽尖端逐渐枯死卷曲; 而耐冷品种日本晴(T1)、耘两优玖48 (T2)的胚芽葡萄糖含量维持在一个较高水平, 抗氧化酶(SOD、POD、CAT)比蛋白活性、H2O2、MDA含量也都保持不变, 其胚芽保持挺立生长状态。分析发现低温抑制了种子的α-淀粉酶活性, 但增加了胚芽的蔗糖合酶活性; 低温延缓了耐冷品种T1和T2的胚根向种子根发育的进程, 却抑制了冷敏感品种S1和S2胚根的发育, 低温下冷敏感品种S1、S2的根系活力显著低于耐冷品种T1、T2, 冷敏感品种S1、S2种子和胚芽的含水量随低温时间的延长不断降低, 而耐冷品种T1、T2相对稳定。相关分析发现, 胚芽的存活率与胚芽和种子的葡萄糖含量、含水量和胚根的长度、体积、活力呈极显著正相关, 但与种子中淀粉和胚芽中蔗糖的含量呈极显著负相关。外源增加S1、S2的水分供应能够显著地提高种子和胚芽在低温下的存活率。上述结果表明, 在种子出苗过程中, 低温胁迫在抑制种子α-淀粉酶活性的同时, 也抑制了胚根的生长发育, 降低了根系向种子和胚芽运输水分的能力, 导致种子中淀粉和胚芽中蔗糖的分解能力下降, 胚芽葡萄糖供应不足, 使得胚芽抗氧化代谢失衡、存活率降低, 而外源增加水分供应可在一定程度上提高低温下胚芽的存活率。

关键词: 低温, 水稻, 种子萌发, 胚芽存活率, 含水量, 抗氧化酶

Abstract:

To investigate varietal differences in rice germ survival and seedling emergence under low-temperature stress and to analyze the mechanisms of low-temperature tolerance during seedling emergence, germinated seeds of four rice varieties with different cold tolerance were used as experimental material and exposed to low temperature and ambient temperature (control) conditions. Carbohydrate and moisture content of seed and germ, seed α-amylase activity, sucrose synthase, antioxidant enzyme activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content of germ during seedling emergence were analyzed over time, along with their correlation with germ survival. The study found that the glucose content and antioxidant enzyme activity (SOD, POD, and CAT) in the germ of the cold-sensitive varieties Zhongjia 8 (S1) and Zhongjiazao 17 (S2) decreased significantly after 4 days of cold treatment, while H2O2 and MDA contents increased gradually, leading to phenotypical stagnation of germ growth and symptoms of death under low-temperature stress. In contrast, the glucose content in the germ of cold-tolerant varieties Nipponbare (T1) and Yunliangyoujiu 48 (T2) remained relatively high, and the enzyme activity of SOD, POD, and CAT, as well as H2O2 and MDA contents, remained stable after 8 days of cold treatment, allowing the germ to maintain upright growth. Analysis revealed that cold inhibited seed α-amylase activity but promoted germ sucrose synthase activity. Cold also delayed root development in cold-tolerant varieties T1 and T2 but inhibited root development in cold-sensitive varieties S1 and S2. Additionally, the root vigor of cold-sensitive varieties was significantly lower than that of cold-tolerant varieties, and the water content of seeds and germs in cold-sensitive varieties S1 and S2 decreased continuously, while that of cold-tolerant varieties T1 and T2 remained stable. Correlation analysis demonstrated that germ survival rate was significantly positively correlated with germ and seed glucose content, germ water content, CAT activity, root length, volume, and root vigor, but significantly negatively correlated with seed starch and germ sucrose content. Moreover, increasing water supply to S1 and S2 exogenously significantly improved their survival rate under low temperature. In conclusion, low-temperature stress not only inhibited seed α-amylase activity but also suppressed root growth and development, reducing the ability to transport water to seeds and germs. This, led to a decrease in the ability to degrade seed starch and germ sucrose during the seedling emergence process, resulting in inadequate glucose supply to germs, an imbalance in germ antioxidant metabolism, and reduced survival rate. However, exogenous increase in water supply could improve germ survival rate to some extent under low temperature.

Key words: low temperature, rice, seed germination, germ survival rate, moisture content, antioxidant enzyme

表1

低温胁迫对水稻胚芽存活率的影响"

品种
Variety
存活率Survival rate (%)
DAS 2 DAS 4 DAS 6 DAS 8 DAS 14
T1 100.0 ± 0.0 a 100.0 ± 0.0 a 99.3 ± 0.6 a 98.3 ± 1.6 ab 97.2 ± 3.9 ab
T2 100.0 ± 0.0 a 100.0 ± 0.0 a 99.0 ± 1.0 a 97.9 ± 2.1 ab 95.8 ± 4.2 ab
S1 99.0 ± 1.0 a 93.1 ± 0.6 bc 88.2 ± 2.6 cd 85.8 ± 4.9 de 41.7 ± 8.3 f
S2 97.9 ± 1.0 ab 90.6 ± 2.1 bcd 84.4 ± 4.8 de 79.5 ± 7.3 e 34.7 ± 5.7 g

图1

不同温度处理下胚芽表型变化及品种间差异 缩写同表1。CK: 对照处理, T: 低温处理, RD 2和RD 4分别表示低温处理后移至室温恢复2 d和4 d。"

图2

不同温度处理下种子淀粉、可溶性总糖、葡萄糖和蔗糖含量的变化及品种间差异 FW: 样品鲜重。CK: 对照处理; T: 低温处理。每行编号对应品种依次为T1、S1、T2、S2。不同小写字母表示同一处理的不同时间数据在0.05概率水平差异显著(Duncan’s法); *和**分别表示同一时间的处理间数据在0.05和0.01概率水平差异显著。"

图3

不同温度处理下胚芽可溶性总糖、蔗糖和葡萄糖含量的变化及品种间差异 FW: 样品鲜重。CK: 对照处理; T: 低温处理。每行编号对应品种依次为T1、S1、T2、S2。不同小写字母表示同一处理的不同时间数据在0.05概率水平差异显著(Duncan’s法); *和**分别表示同一时间的处理间数据在0.05和0.01概率水平差异显著。"

图4

不同温度处理下种子α-淀粉酶和胚芽蔗糖合酶活性的变化及品种间差异 缩写同表1。CK: 对照处理; T: 低温处理。不同小写字母表示同一处理的不同时间数据在0.05概率水平差异显著(Duncan’s法); *和**分别表示同一时间的处理间数据在0.05和0.01概率水平差异显著。"

图5

不同温度处理下胚芽抗氧化代谢的变化及品种间差异 缩写同表1。CK: 对照处理; T: 低温处理。不同小写字母表示同一处理的不同时间数据在0.05概率水平差异显著(Duncan’s法); *和**分别表示同一时间的处理间数据在0.05和0.01概率水平差异显著。"

表2

不同温度处理下种子根系活力和形态的变化及品种间差异"

项目
Item
品种
Variety
处理
Treatment
处理时间Time of treatment
DAS 2 DAS 4 DAS 6 DAS 8
根系总吸收表面积
Total absorption area
(×10-2 cm2)
T1 CK 1.88 ± 0.17 c 3.02 ± 0.30 b 4.48 ± 0.34 a 4.63 ± 0.68 a
T 1.27 ± 0.24 b 2.27 ± 0.38 a 2.40 ± 0.17 a 2.74 ± 0.25 a
T2 CK 2.93 ± 0.24 c 3.93 ± 0.49 bc 4.56 ± 0.71 ab 5.44 ± 0.66 a
T 2.58 ± 0.13 c 3.16 ± 0.27 bc 3.51 ± 0.31 ab 4.05 ± 0.73 a
S1 CK 1.53 ± 0.37 d 2.54 ± 0.56 c 4.07 ± 0.68 b 4.98 ± 0.11 a
T 0.68 ± 0.15 a 0.71 ± 0.14 a 0.85 ± 0.03 a 0.81 ± 0.24 a
S2 CK 2.03 ± 0.48 b 4.17 ± 0.51 a 4.14 ± 0.20 a 4.22 ± 0.34 a
T 0.44 ± 0.10 a 0.56 ± 0.03 a 0.51 ± 0.05 a 0.54 ± 0.09 a
根系活跃吸收表面积
Active absorption area
(×10-2 cm2)
T1 CK 0.51 ± 0.13 c 1.14 ± 0.04 b 1.60 ± 0.15 a 1.86 ± 0.34 a
T 0.44 ± 0.11 c 0.96 ± 0.06 b 1.09 ± 0.11 b 1.42 ± 0.19 a
T2 CK 1.05 ± 0.27 c 1.86 ± 0.30 b 2.02 ± 0.35 b 2.81 ± 0.60 a
T 0.88 ± 0.16 c 1.44 ± 0.08 bc 1.89 ± 0.16 ab 2.21 ± 0.15 a
S1 CK 0.52 ± 0.14 b 0.95 ± 0.06 a 0.97 ± 0.18 a 1.24 ± 0.21 a
T 0.33 ± 0.05 a 0.32 ± 0.07 a 0.42 ± 0.01 a 0.38 ± 0.09 a
S2 CK 0.54 ± 0.21 b 1.75 ± 0.25 a 1.90 ± 0.14 a 1.96 ± 0.08 a
T 0.23 ± 0.04 a 0.29 ± 0.03 a 0.26 ± 0.06 a 0.24 ± 0.06 a
根长
Root length
(cm)
T1 CK 3.09 ± 0.35 c 6.00 ± 0.67 b 7.69 ± 0.87 a 8.14 ± 0.63 a
T 2.25 ± 0.22 d 2.46 ± 0.29 c 2.87 ± 0.23 b 3.16 ± 0.27 a
T2 CK 4.20 ± 0.66 d 5.95 ± 0.68 c 7.26 ± 0.62 b 7.44 ± 0.83 a
T 2.85 ± 0.57 a 3.19 ± 0.50 a 3.22 ± 0.45 a 3.24 ± 0.23 a
S1 CK 3.45 ± 0.49 c 6.53 ± 1.08 b 7.81 ± 0.87 a 8.95 ± 0.76 a
T 1.19 ± 0.30 a 1.21 ± 0.25 a 1.21 ± 0.29 a 1.19 ± 0.28 a
S2 CK 3.23 ± 0.69 d 6.46 ± 1.42 c 7.93 ± 0.88 b 9.25 ± 0.79 a
T 1.21 ± 0.38 a 1.29 ± 0.34 a 1.19 ± 0.26 a 1.21 ± 0.28 a
根体积
Root volume
(×10-3 cm3)
T1 CK 4.93 ± 1.16 b 5.47 ± 1.46 b 7.07 ± 1.39 a 7.20 ± 1.15 a
T 3.93 ± 1.10 c 4.53 ± 0.83 bc 5.13 ± 0.52 ab 5.80 ± 1.74 a
T2 CK 6.38 ± 1.66 c 6.93 ± 1.67 b 7.13 ± 0.92 a 7.64 ± 1.28 a
T 4.93 ± 1.14 b 5.67 ± 0.82 ab 6.00 ± 0.65 a 6.74 ± 0.99 a
S1 CK 4.00 ± 0.45 b 5.69 ± 1.25 a 6.80 ± 1.26 a 7.20 ± 1.08 a
T 1.33 ± 0.49 a 1.80 ± 0.77 a 1.93 ± 0.46 a 1.87 ± 0.83 a
S2 CK 6.20 ± 1.32 c 6.73 ± 0.96 bc 7.27 ± 1.53 ab 8.13 ± 1.06 a
T 2.33 ± 0.49 a 2.47 ± 0.74 a 2.36 ± 0.74 a 2.23 ± 0.82 a

图6

不同温度处理下胚芽、种子和根系含水量的变化及品种间差异 缩写同表1和图1。不同小写字母表示同一处理的不同时间数据在0.05概率水平差异显著(Duncan’s法); *和**分别表示同一时间的处理间数据在0.05和0.01概率水平差异显著。"

图7

低温胁迫下4份材料存活率与生理指标间的相关性 L: 根长, V: 根体积, TAA: 根吸收表面积, AAA: 根活跃吸收表面积, MC: 含水量, Sta: 淀粉, TSS: 可溶性总糖, Suc: 蔗糖, Glu: 葡萄糖, α-Amy: α-淀粉酶, SS: 蔗糖合酶, Pro: 可溶性蛋白质, SOD: 超氧化物歧化酶, POD: 过氧化物酶, CAT: 过氧化氢酶, H2O2: 过氧化氢, MDA: 丙二醛。*表示在0.05概率水平相关性显著, **表示在0.01概率水平相关性显著。"

附图1

不同处理下胚芽存活率和组织含水量变化及品种间差异 缩写同表1。I: 原试验, II: 补充试验, 不同的小写字母表示同一品种、同一处理、不同处理时间的数据在Duncan’s法在0.05概率水平差异显著。*和**表示同一品种、同一时间、不同处理的数据在0.05和0.01概率水平差异显著。"

[1] 罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1-13.
Luo X W, Wang Z M, Zeng S, Zang Y, Yang W W, Zhang M H. Recent advances in mechanized direct seeding technology for rice. J South China Agric Univ, 2019, 40(5): 1-13 (in Chinese with English abstract).
[2] 赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议. 中国水稻科学, 2019, 33: 553-564.
Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River. Chin J Rice Sci, 2019, 33: 553-564 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.9061
[3] 蔡志欢, 张桂莲. 水稻低温冷害研究进展. 作物研究, 2018, 32: 249-255.
Cai Z H, Zhang G L. Research progress of low temperature and chilling injury of rice. Crop Res, 2018, 32: 249-255 (in Chinese).
[4] 闫锋. 萌发期低温胁迫对谷子幼苗生长及产量的影响. 黑龙江农业科学, 2022, (10): 13-16.
Yan F. Effects of low temperature stress at germination stage on seedling growth and yield of foxtail millet. Heilongjiang Agric Sci, 2022, (10): 13-16 (in Chinese with English abstract).
[5] 刘利成, 闵军, 刘三雄, 李小湘, 潘孝武, 刘文强, 胡敏, 赵永, 黎用朝. 直播稻生产概况与品种选育策略. 中国稻米, 2022, 28(5): 44-48.
doi: 10.3969/j.issn.1006-8082.2022.05.007
Liu L C, Min J, Liu S X, Li X X, Pan X W, Liu W Q, Hu M, Zhao Y, Li Y C. Production situation and varieties breeding strategies of direct seeding rice. China Rice, 2022, 28(5): 44-48 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.05.007
[6] 张昊楠. 低温下硒对水稻种子萌发及根系活力的影响. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2022.
Zhang H N. Effects of Selenium on Seed Germination and Root Viability of Rice at Low Temperatures. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[7] 王慰亲.. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang W Q. Mechanisms Underlying the Effects of Seed Priming on the Establishment of Direct-Seeded Early Season Rice under Chilling Stress. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[8] 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶. 植物生理学通讯, 2002, 38: 289-295.
Zhang M F, Li Z L. Sucrose-metabolizing enzymes in higher plants. Plant Physiol Commun, 2002, 38: 289-295 (in Chinese with English abstract).
[9] 李孟珠. 水稻蔗糖转运蛋白(OsSUTs)参与蔗糖转运的功能分析. 南京农业大学硕士学位论文,江苏南京, 2020.
Li M Z. Functional Analysis of Rice Sucrose Transporters (OsSUTs) Involved in Sucrose Transport. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract).
[10] 柴静, 张会, 姚丽丽, 俞嘉宁. 蔗糖合酶在植物生长发育中的作用研究. 生命科学, 2012, 24: 81-88.
Chai J, Zhang H, Yao L L, Yu J N. The function of sucrose synthase in plant growth and development. Chin Bull Life Sci, 2012, 24: 81-88 (in Chinese with English abstract).
[11] 何艺涛, 王广亚, 范春芬, 夏涛, 彭良才, 丰胜求. 植物蔗糖合酶研究进展. 植物生理学报, 2020, 56: 1165-1176.
He Y T, Wang G Y, Fan C F, Xia T, Peng L C, Feng S Q. Research progress of sucrose synthase in plants. Plant Physiol J, 2020, 56: 1165-1176 (in Chinese with English abstract).
[12] 王广亚. 水稻蔗糖合酶基因功能研究及甘蔗属植物生物质降解转化. 华中农业大学硕士学位论文,湖北武汉, 2016.
Wang G Y. Study on the Function of Sucrose Synthase Gene in Rice and the Degradation and Transformation of Sugarcane Biomass. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[13] Yu S M, Lo S F, Ho T H D. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015, 20: 844-857.
[14] 刘聪, 董腊嫒, 林建中, 刘选明. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展. 生命科学研究, 2019, 23: 253-258.
Liu C, Dong L A, Lin J Z, Liu X M. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses. Life Sci Res, 2019, 23: 253-258 (in Chinese with English abstract).
[15] 赵晶晶, 詹万龙, 周浓. 非生物胁迫下植物体内活性氧和丙酮醛代谢的研究进展. 南方农业学报, 2022, 53: 2099-2113.
Zhao J J, Zhan W L, Zhou N. Research progress on the metabolisms of reactive oxygen species and methylglyoxal in plants under abiotic stresses. J South Agric, 2022, 53: 2099-2113 (in Chinese with English abstract).
[16] 陈东, 李强, 彭彦, 吴天昊, 张秀丽, 董家瑜, 毛毕刚, 赵炳然. 淹水胁迫下褪黑素浸种对水稻幼苗生长的影响. 华北农学报, 2019, 34(3): 129-136.
doi: 10.7668/hbnxb.201751428
Chen D, Li Q, Peng Y, Wu T H, Zhang X L, Dong J Y, Mao B G, Zhao B R. Effect of melatonin on rice seedling growth under submergence stress. Acta Agric Boreali-Sin, 2019, 34(3): 129-136 (in Chinese with English abstract).
doi: 10.7668/hbnxb.201751428
[17] 刘丹. 水分胁迫下小麦幼苗呼吸及渗透调节物资积累的变化. 云南农业大学学报, 1990, 5(1): 30-37.
Liu D. Changes in respiration and some osmoticas accumulation of wheat seedling under water stress. J Yuannan Agric Univ, 1990, 5(1): 30-37 (in Chinese with English abstract).
[18] 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响. 植物生态学报, 2008, 32: 491-500.
doi: 10.3773/j.issn.1005-264x.2008.02.029
Cai K Z, Wu X Z, Luo S M. Effects of water stress on osmolytes at different growth stages in rice leaves and roots. J Plant Ecol, 2008, 32: 491-500 (in Chinese with English abstract).
[19] 向丹. 水稻苗期低温耐性差异及其调控研究. 中国农业科学院硕士学位论文, 北京, 2013.
Xiang D. Study on the Difference of Low Temperature Tolerance in Rice Seedling Stage and Its Regulation. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[20] 周萍. 低温胁迫下水稻幼苗蛋白表达研究. 广西大学硕士学位论文,广西南宁, 2013.
Zhou P. Proteomic Analysis of Rice Seedling under Cold Stress. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2013 (in Chinese with English abstract).
[21] 胡涛. 低温对水稻根系生理特性及其基因表达的影响. 沈阳农业大学硕士学位论文,辽宁沈阳, 2019.
Hu T. Effects of Low Temperature on Physiological Characteristics and Gene Expression of Rice Roots. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2019 (in Chinese with English abstract).
[22] 黄奇娜, 江苏, 汪利民, 张燕, 俞林飞, 李春福, 丁利群, 邵国胜. 低温胁迫后水分对水稻幼苗根系活力和水孔蛋白相关基因表达的影响. 中国水稻科学, 2022, 36: 367-376.
doi: 10.16819/j.1001-7216.2022.210805
Huang Q N, Jiang S, Wang L M, Zhang Y, Yu L F, Li C F, Ding L Q, Shao G S. Effects of moisture content on root vigor and the expression of aquaporin-related genes in rice seedlings under low temperature stress. Chin J Rice Sci, 2022, 36: 367-376 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210805
[23] 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控. 中国农业科学院博士学位论文, 北京, 2018.
Zhang C X. The Mechanism and Regulation Underlying the Inhibition on the Assimilates Transport and Metabolism in Phloem of Rice Caused by Heat Stress. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[24] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究. 天津化工, 2009, 23(3): 40-42.
Wang X P, Xing S L. Determination of protein quantitation using the method of coomassie brilliant blue. Tianjin Chem Ind, 2009, 23(3): 40-42 (in Chinese with English abstract).
[25] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[26] Maehly A C, Chance B. The assay of catalases and peroxidases. Methods Biochem Anal, 1954, 1: 357-424.
pmid: 13193536
[27] Zhang C X, Fu G F, Yang X Q, Yang Y J, Zhao X, Chen T T, Zhang X F, Jin Q Y, Tao L X. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity. J Agron Crop Sci, 2016, 202: 394-408.
[28] 李光彦. 能量代谢影响水稻耐热性的作用机理. 华中农业大学博士学位论文,湖北武汉, 2021.
Li G Y. The Mechanism of Energy Metabolism Mediating Rice Heat Resistance. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[29] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响. 作物学报, 2024, 50: 425-439.
doi: 10.3724/SP.J.1006.2024.32016
Xu R, Yang W Y, Zhu J L, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540. Acta Agron Sin, 2024, 50: 425-439 (in Chinese with English abstract).
[30] 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制. 中国农业科学, 2023, 56: 236-248.
doi: 10.3864/j.issn.0578-1752.2023.02.003
Xiao D S, Xu C M, Wang D Y, Zhang X F, Chen S, Chu G, Liu Y H. Effects of rhizosphere oxygen environment on phosphorus uptake of rice seedlings and its physiological mechanisms in hydroponic condition. Sci Agric Sin, 2023, 56: 236-248 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.02.003
[31] 马雅美, 张少红, 赵均良. 水稻直播相关性状遗传分析及分子机制研究进展. 广东农业科学, 2021, 48(10): 13-22.
Ma Y M, Zhang S H, Zhao J L. Research progress in genetic analysis and molecular mechanisms of rice direct-seeding related traits. Guangdong Agric Sci, 2021, 48(10): 13-22 (in Chinese with English abstract).
[32] 王忠. 植物生理学(第2版). 北京: 中国农业出版社, 2008. pp 432-435.
Wang Z. Plant Physiology, 2nd edn. Beijing: China Agriculture Press, 2008. pp 432-435 (in Chinese).
[33] 王忠, 顾蕴洁, 李卫芳, 黄山, 李克武. 水稻糊粉层的形成及其在萌发过程中的变化. 扬州大学学报(自然科学版), 1998, 1(1): 19-24.
Wang Z, Gu Y J, Li W F, Huang S, Li K W. Formation of rice aleurone layer and its changes during germination. J Yangzhou Univ (Nat Sci Edn), 1998, 1(1): 19-24 (in Chinese with English abstract).
[34] 郁平慧. 早籼稻低温伤害机理及调控措施研究. 中国农业科学院硕士学位论文, 北京, 2020.
Yu P H. Researches on the Mechanism and Regulations underlying Cold Stress Impaired Early Indica Rice. MS Thesis of Chinese Academy of Agricultural Sciences, 2020 (in Chinese with English abstract).
[35] Yu P H, Jiang N, Fu W M, Zheng G J, Li G Y, Feng B H, Chen T T, Ma J Y, Li H B, Tao L X, Fu G F. ATP hydrolysis determines cold tolerance by regulating available energy for glutathione synthesis in rice seedling plants. Rice, 2020, 13: 23.
doi: 10.1186/s12284-020-00383-7 pmid: 32274603
[36] 王文霞, 陈丽明, 王海霞, 刘有清, 吴自明, 曾勇军, 谭雪明, 潘晓华, 石庆华, 曾研华. 淹水缓解直播早籼稻苗期低温冷害的生理特性研究. 中国水稻科学, 2021, 35: 166-176.
doi: 10.16819/j.1001-7216.2021.0914
Wang W X, Chen L M, Wang H X, Liu Y Q, Wu Z M, Zeng Y J, Tan X M, Pan X H, Shi Q H, Zeng Y H. Study on physiological characteristics behind mitigative effects of flooding on low temperature-caused chilling damage to direct seeded early indica rice at the seedling stage. Chin J Rice Sci, 2021, 35: 166-176 (in Chinese with English abstract).
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[6] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[7] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[8] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[9] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[10] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[11] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[12] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[13] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[14] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[15] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!