欢迎访问作物学报,今天是

作物学报

• •    

氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率

闫喆林,任强,樊志龙,殷文,孙亚丽,范虹,何蔚,胡发龙*,闫丽娟*,柴强   

  1. 甘肃农业大学农学院 / 省部共建干旱生境作物学国家重点实验室, 甘肃兰州 730070
  • 收稿日期:2025-01-09 修回日期:2025-04-25 接受日期:2025-04-25 网络出版日期:2025-05-13
  • 基金资助:
    本研究由国家自然科学基金项目(32201925, U21A20218),国家重点研发计划项目(2022YFD1900200),甘肃省“双一流”科研重点项目(GSSYLXM-02)和甘肃农业大学伏羲青年人才培育项目(Gaufx-05Y09)资助。

Postponed N application optimizes interspecific interactions and enhances N use efficiency in wheat-maize intercropping systems in an oasis irrigation region

YAN Zhe-Lin,REN Qiang,FAN Zhi-Long,YIN Wen,SUN Ya-Li,FAN Hong,HE Wei,HU Fa-Long*,YAN Li-Juan*,CHAI Qiang   

  1. College of Agronomy, Gansu Agricultural University / Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070, Gansu, China
  • Received:2025-01-09 Revised:2025-04-25 Accepted:2025-04-25 Published online:2025-05-13
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32201925, U21A20218), the National Key Research and Development Program of China (2022YFD1900200), the “Double First-Class” Key Scientific Research Project of Education Department in Gansu Province (GSSYLXM-02), and the Fuxi Young Talents Fund of Gansu Agricultural University (Gaufx-05Y09).

摘要:

针对绿洲灌区氮肥损失严重,阻碍作物可持续生产等问题,通过明确氮肥后移对间作系统种间关系的影响,为麦玉间作系统氮肥高效管理提供理论依据和技术支撑。试验于2022—2023年在甘肃农业大学绿洲农业综合试验站开展,采用随机区组设计,设小麦||玉米、单作小麦、单作玉米3种种植模式,氮肥后移0 (传统施氮, N1)、10% (N2)、20% (N3) 3种施氮制度,研究不同种植制度及氮肥后移比例对小麦和玉米的种间关系及氮素利用的影响。结果表明,小麦间作玉米结合氮肥后移强化了麦玉共生期小麦相对于玉米的竞争力,其中氮肥后移10%较传统施氮竞争力提高3.4%,后移20%较传统施氮提高8.13%,且后移20%较后移10%提高5.0%。氮肥后移增强间作玉米的恢复效应,与传统施氮相比,氮肥后移10%间作玉米恢复效应提高11.3%,后移20%提高20.5%,且后移20%较后移10%提高11.5%。间作系统籽粒产量较单作加权平均提高23.8%~28.7%,表现出明显的间作优势,且氮肥后移20%处理的籽粒产量较传统施氮提高22.7%。间作种植模式下氮肥利用率较单作加权平均提高4.2%~26.4%,氮肥偏生产力较单作加权平均增高21.4%~30.8%,且氮肥后移20%较后移10%氮肥利用率提高31.5%,较传统施氮提高10.0%;氮肥偏生产力氮肥后移20%较后移10%提高12.7%,较传统施氮提高23.3%。因此,小麦间作玉米结合氮肥后移20%可优化麦玉间作系统种间关系,增加作物产量并提高氮素利用效率,是绿洲灌区小麦、玉米高效生产的适宜种植模式和施氮制度。

关键词: 氮肥后移, 小麦间作玉米, 种间竞争力, 恢复效应, 氮素利用效率

Abstract:

In response to the substantial nitrogen fertilizer loss in oasis irrigation areaswhich poses a challenge to sustainable crop productionthis study investigates the effects of delayed nitrogen application on interspecific interactions within wheat–maize intercropping systems. The goal is to provide a theoretical foundation and technical guidance for improving nitrogen fertilizer management efficiency in such systems. Field experiments were conducted from 2022 to 2023 at the Oasis Agricultural Comprehensive Experimental Station of Gansu Agricultural University, using a randomized block design with three planting patterns: wheatmaize intercropping, monoculture wheat, and monoculture maize. Three nitrogen application schedules were tested: 0% postponement (traditional application, N1), 10% postponement (N2), and 20% postponement (N3). The study examined how different planting systems and nitrogen postponement levels influence interspecific interactions and nitrogen use efficiency in wheat and maize. Results showed that combining wheat–maize intercropping with delayed nitrogen application enhanced wheat’s competitive ability during the symbiotic growth phase. Specifically, wheat's competitive advantage increased by 3.4% with a 10% delay and by 8.13% with a 20% delay, both compared to the traditional application. Moreover, the 20% delay led to a 5.0% increase in competitive ability compared to the 10% delay. Delayed nitrogen application also improved the recovery effect of intercropped maize, with increases of 11.3% and 20.5% under 10% and 20% delays, respectively, compared to the traditional method. The 20% delay further improved maize recovery by 11.5% relative to the 10% delay. Intercropping increased grain yield by 23.8% to 28.7% compared to the weighted average of monoculture yields, highlighting a clear intercropping advantage. Additionally, a 20% delay in nitrogen application raised grain yield by 22.7% compared to traditional application. Under intercroppingnitrogen use efficiency improved by 4.2% to 26.4%, and nitrogen partial factor productivity increased by 21.4% to 30.8%, both compared to the weighted averages of monocropping. Furthermore, nitrogen use efficiency with a 20% delay improved by 31.5% over the 10% delay and by 10.0% over the traditional approach, while partial factor productivity increased by 12.7% and 23.3%, respectively. These findings suggest that intercropping wheat with maize combined with a 20% delayed nitrogen application optimizes interspecific interactions, enhances crop yield, and improves nitrogen use efficiency. This approach represents a promising cultivation and fertilization strategy for sustainable wheat and maize production in oasis irrigation regions.

Key words: N fertilizer postponing application, wheat-maize intercropping, interspecific competition, recovery effect, nitrogen use efficiency

[1] Liang G P. Nitrogen fertilization mitigates global food insecurity by increasing cereal yield and its stability. Glob Food Secur, 2022, 34: 100652.

[2] 侯云鹏, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 王立春, 尹彩侠. 不同缓/控释氮肥对春玉米氮素吸收利用、土壤无机氮变化及氮平衡的影响. 中国农业科学, 2018, 51: 39283940.
Hou Y P, Li Q, Kong L L, Qin Y B, Wang M, Yu L, Wang L C, Yin C X. Effects of different slow/controlled release nitrogen fertilizers on spring maize nitrogen uptake and utilization, soil inorganic nitrogen and nitrogen balance. Sci Agric Sin, 2018, 51: 3928–3940 (in Chinese with English abstract).

[3] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51: 23362347.
Gai X P, Liu H B, Zhai L M, Yang B, Ren T Z, Wang H Y, Wu S X, Lei Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Sci Agric Sin, 2018, 51: 2336–2347 (in Chinese with English abstract).

[4] 付浩然, 李婷玉, 曹寒冰, 张卫峰. 我国化肥减量增效的驱动因素探究. 植物营养与肥料学报, 2020, 26: 561580.
Fu H R, Li T Y, Cao H B, Zhang W F. Research on the driving factors of fertilizer reduction in China. J Plant Nutr Fert, 2020, 26: 561–580 (in Chinese with English abstract).

[5] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403415.
Li L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403–415 (in Chinese with English abstract).

[6] 董奎军, 张亦涛, 刘瀚文, 文宏达. 国内外农田间作种植氮素利用研究差异及其原因分析. 土壤通报, 2024, 55: 1491–1500.
Dong K J, Zhang Y T, Liu H W, Wen H D. Development trend of nitrogen utilization in intercropping planting system at home and abroad. Chin J Soil Sci, 2024, 55: 1491–1500 (in Chinese with English abstract).

[7] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量. 作物学报, 2021, 47: 24812489.
Zhang J D, Fan H, Du J Y, Yin W, Fan Z L, Hu F L, Chai Q. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize. Acta Agron Sin, 2021, 47: 2481–2489 (in Chinese with English abstract).

[8] 陈远学, 彭丹丹, 胡斐, 胡月秋, 白世豪, 徐开未. 玉米不同株型及种植密度对间作大豆产量和养分吸收利用的影响. 草业科学, 2021, 38: 136–146.
Chen Y X, Peng D D, Hu F, Hu Y Q, Bai S H, Xu K W. Effects of different plant types and planting densities of maize on the yield, nutrient uptake, and utilization of intercropped soybean. Pratac Sci, 2021, 38: 136–146 (in Chinese with English abstract).

[9] 字淑慧, 吴开贤, 安曈昕, 欧阳铖人, 杨友琼, 周锋, 吴伯志. 行距对间作玉米/马铃薯产量优势和种间关系的影响. 云南农业大学学报(自然科学), 2019, 34(2): 200209.
Zi S H, Wu K X, An T X, Ouyang C R, Yang Y Q, Zhou F, Wu B Z. Effects of row spacing on the yields advantage and interspecific interaction of the intercropped maize and potato. J Yunnan Agric (Univ Nat Sci), 2019, 34(2): 200–209 (in Chinese with English abstract).

[10] 王超, 杜缠缠, 杨宏伟, 王琦明, 樊志龙, 殷文, 胡发龙, 柴强. 氮肥减施对玉米间作箭筈豌豆种间关系及产量的影响. 西北农业学报, 2024, 33: 810819.
Wang C, Du C C, Yang H W, Wang Q M, Fan Z L, Yin W, Hu F L, Chai Q. Effect of reduced nitrogen fertilization on interspecific relationship and yield performance of maize-vetch intercropping. Acta Agric Boreali-Occident Sin, 2024, 33: 810–819 (in Chinese with English abstract).

[11] Ren K Y, Xu M G, Li R, Zheng L, Liu S G, Reis S, Wang H Y, Lu C G, Zhang W J, Gao H, et al. Optimizing nitrogen fertilizer use for more grain and less pollution. J Clean Prod, 2022, 360: 132180.

[12] Xu K, Chai Q, Hu F L, Yin W, Fan Z L. Postponed nitrogen fertilizer topdressing enhances nitrogen use efficiency in pea/maize intercropping. Plant Soil, 2023, 487: 587603.

[13] 王琦明, 胡发龙, 柴强. 保护性耕作对小麦/玉米间作系统生产效率和可持续性的影响. 中国生态农业学报(中英文), 2019, 27: 13441353..
Wang Q M, Hu F L, Chai Q. Effect of conservation tillage on natural resources utilization efficiency and sustainability of integrated wheat-maize intercropping system. Chin J Eco-Agric, 2019, 27: 13441353 (in Chinese with English abstract).

[14] 王利立, 朱永永, 殷文, 郑德阳, 柴强. 大麦/豌豆间作系统种间竞争力及产量对地下作用和密度互作的响应. 中国生态农业学报, 2016, 24: 265273.
Wang L L, Zhu Y Y, Yin W, Zheng D Y, Chai Q. Competitiveness and yield response to belowground interaction and density in barley-pea intercropping system. Chin J Eco-Agric, 2016, 24: 265273 (in Chinese with English abstract).

[15] 欧阳子龙, 贾湘璐, 石景忠, 韦妙琴, 滕维超. 间作对作物、土壤及微生物影响的研究进展. 江苏农业科学, 2024, 52(2): 1830.
Ouyang Z L, Jia X L, Shi J Z, Wei M Q, Teng W C. Research progress on effects of intercropping on crops, soils and microorganisms. Jiangsu Agric Sci, 2024, 52(2): 18–30 (in Chinese with English abstract).

[16] 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究. 植物生态学报, 2021, 45: 10491063.
Li H D, Wu X W, Xiao Z S. Assembly, ecosystem functions, and stability in species interaction networks. Chin J Plant Ecol, 2021, 45: 10491063 (in Chinese with English abstract).

[17] 江小雷, 张卫国, 段争虎. 资源互补效应对多样性-生产力关系的影响. 植物生态学报, 2005, 29: 523529.
Jiang X L, Zhang W G, Duan Z H. Effects of complementarity on diversity-productivity relationship. Acta Phytoecol Sin, 2005, 29: 523529 (in Chinese with English abstract).

[18] 武文明, 王世济, 陈洪俭, 崔权仁, 竟丽丽. 氮肥后移促进受渍夏玉米根系形态恢复和提高花后光合性能. 中国生态农业学报, 2017, 25: 10081015.
Wu W M, Wang S J, Chen H J, Cui Q R, Jing L L. Postponed nitrogen application enhances root morphology recovery and photosynthetic characteristics of summer maize waterlogging stressed at seedling stage. Chin J Eco-Agric, 2017, 25: 10081015 (in Chinese with English abstract).

[19] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响. 作物杂志, 2021, (1): 143–149.
Liu J M, Wang Y, Chu X, Qi X, Wang M M, Zhao Y N, Ye Y L, Huang Y F. Effects of planting density and nitrogen application rate on annual yield and nitrogen use efficiency of wheat-maize rotation system. Crops, 2021, (1): 143–149 (in Chinese with English abstract).

[20] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应. 植物营养与肥料学报, 2015, 21: 46–57.
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong T W, Liu W G, Yang F, Mao S M. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems. J Plant Nutr Fert, 2015, 21: 4657 (in Chinese with English abstract).

[21] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征. 中国生态农业学报(中英文), 2022, 30: 17501761.
Fan H, Yin W, Chai Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages. Chin J Eco-Agric, 2022, 30: 17501761 (in Chinese with English abstract).

[22] 赵建华, 孙建好, 陈亮之, 李伟绮, 曹素珍, 谷科强. 玉米与不同豆科作物间作对氮素的竞争与恢复效应. 植物营养与肥料学报, 2023, 29: 640650.
Zhao J H, Sun J H, Chen L Z, Li W Q, Cao S Z, Gu K Q. Nitrogen competition and recovery effects of maize in different maize/legumes intercropping systems. J Plant Nutr Fert, 2023, 29: 640650 (in Chinese with English abstract).

[23] 刘志恒, 徐开未, 王科, 解晋, 王佳锐, 赵亚妮, 陈远学. 不同施氮量对玉米产量及各器官养分积累的影响. 浙江大学学报(农业与生命科学版), 2018, 44: 573579.
Liu Z H, Xu K W, Wang K, Xie J, Wang J R, Zhao Y N, Chen Y X. Effect of different nitrogen applications on maize yield and nutrient accumulation in different organs. J Zhejiang Univ (Agric Life Sci), 2018, 44: 573579 (in Chinese with English abstract).

[24] 武鹏, 王玉凤, 张翼飞, 陈天宇, 王怀鹏, 尹雪巍, 杨丽, 张继卫, 菅立群, 李庆, . 不同氮素形态及配比对玉米生长、氮素利用及产量的影响. 中国土壤与肥料, 2020, (2): 123132.
Wu P, Wang Y F, Zhang Y F, Chen T Y, Wang H P, Yin X W, Yang L, Zhang J W, Jian L Q, Li Q, et al. Effects of different nitrogen forms and ratios on growth, nitrogen utilization and yield of maize. Soil Fert Sci China, 2020, (2): 123132 (in Chinese with English abstract).

[25] 赵德强, 李彤, 侯玉婷, 元晋川, 廖允成. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益. 中国农业科学, 2020, 53: 19711985.
Zhao D Q, Li T, Hou Y T, Yuan J C, Liao Y C. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns. Sci Agric Sin, 2020, 53: 19711985 (in Chinese with English abstract).

[26] Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, Römheld V, et al. Integrated soil-crop system management for food security. Proc Natl Acad Sci USA, 2011, 108: 6399–6404.

[27] Li Y, Zhang W F, Chen X P, Cui Z L, Zhang F S. Nitrogen dynamics in wheat-maize intercropping systems under different fertilization strategies. Agric Ecosyst Environ, 2019, 279: 1–10.

[28] 漆栋良, 吴雪, 胡田田. 施氮方式对玉米根系生长、产量和氮素利用的影响. 中国农业科学, 2014, 47: 28042813.
Qi D L, Wu X, Hu T T. Effects of nitrogen supply methods on root growth, yield and nitrogen use of maize. Sci Agric Sin, 2014, 47: 28042813 (in Chinese with English abstract).

[29] 孙岩, 乔月彤, 赵强, 胡延峰, 朱英华, 赵培国, 宋立成, 夏海勇. 玉米与豆科作物间套作体系氮素吸收效应研究进展. 江苏农业科学, 2024, 52(10): 2128.
Sun Y, Qiao Y T, Zhao Q, Hu Y F, Zhu Y H, Zhao P G, Song L C, Xia H YResearch progress on nitrogen uptake effect of intercropping system between maize and leguminous crops. Jiangsu Agric Sci, 2024, 52(10): 2128 (in Chinese with English abstract).

[30] 任强, 徐珂, 樊志龙, 殷文, 范虹, 何蔚, 胡发龙, 柴强. 小麦玉米间作氮肥后移利于减少土壤蒸发提高水分利用效率. 中国农业科学, 2024, 57: 12951307.
Ren Q, Xu K, Fan Z L, Yin W, Fan H, He W, Hu F L, Chai Q. Nitrogen fertilizer postponing application benefits wheat-maize intercropping by reducing soil evaporation and improving water use efficiency. Sci Agric Sin, 2024, 57: 12951307 (in Chinese with English abstract).

[31] 吕明洋, 王俊, 胡宁, 隋标, 王鸿斌, 赵兴敏, 赵兰坡. 吉林玉米带不同玉米//小麦间作模式对作物产量及水分利用率的影响. 玉米科学, 2019, 27(2): 106–112.
Lyu M Y, Wang J, Hu N, Sui B, Wang H B, Zhao X M, Zhao L P. Effects of different maize// wheat intercropping systems on crop yield and water use efficiency in Jilin maize belt. J Maize Sci, 2019, 27(2): 106–112 (in Chinese with English abstract).

[32] 陈丽, 张璐鑫, 吴枫, 李真, 龙兴洲, 杨玉锐, 尹宝重. 河北平原麦玉两熟轮耕模式对土壤特性及作物产量的影响. 作物杂志, 2019, (5): 143150.
Chen L, Zhang L X, Wu F, Li Z, Long X Z, Yang Y R, Yin B Z. Effects of wheat-maize double crops rotational tillage on soil characteristics and crop yield in Hebei Plain. Crops, 2019, (5): 143150 (in Chinese with English abstract).

[33] 赵靓, 侯振安, 黄婷, 张扬, 柴颖, 毛家双. 新疆石河子地区玉米产量及氮素平衡的施氮量阈值研究. 植物营养与肥料学报, 2014, 20: 860–869.
Zhao J, Hou Z A, Huang T, Zhang Y, Chai Y, Mao J S. Study on the nitrogen rate threshhold of maize yield and nitrogen balance in Shihezi, Xinjiang. J Plant Nutr Fert, 2014, 20: 860–869 (in Chinese with English abstract).

[34] 魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017, 50: 29162927.
Wei T B, Hu F L, Zhao C, Feng F X, Yu A Z, Liu C, Chai Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Sci Agric Sin, 2017, 50: 29162927 (in Chinese with English abstract).

[35] 徐珂, 樊志龙, 殷文, 赵财, 于爱忠, 胡发龙, 柴强. 氮肥后移及间作对玉米光合特性的耦合效应. 中国农业科学, 2022, 55: 41314143.
Xu K, Fan Z L, Yin W, Zhao C, Yu A Z, Hu F L, Chai Q. Coupling effects of N-fertilizer postponing application and intercropping on maize photosynthetic physiological characteristics. Sci Agric Sin, 2022, 55: 41314143 (in Chinese with English abstract).

[36] 张雷昌, 汤利, 董艳, 郑毅. 根系互作对间作玉米大豆氮和磷吸收利用的影响. 南京农业大学学报, 2016, 39: 611–618.
Zhang L C, Tang L, Dong Y, Zheng Y. Effects of root interaction on nitrogen and phosphorus uptake and utilization in maize and soybean intercropping. J Nanjing Agric Univ, 2016, 39: 611–618 (in Chinese with English abstract).

[37] 冯晨, 黄波, 冯良山, 郑家明, 白伟, 杜桂娟, 向午燕, 蔡倩, 张哲, 孙占祥. 不同配置对辽西玉米花生间作系统氮素吸收利用的影响. 中国农业科学, 2022, 55: 61–73.
Feng C, Huang B, Feng L S, Zheng J M, Bai W, Du G J, Xiang W Y, Cai Q, Zhang Z, Sun Z X. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in west Liaoning. Sci Agric Sin, 2022, 55: 61–73 (in Chinese with English abstract).

[38] 李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31: 1617–1630.
Li Y Y, Hu H S, Cheng X, Sun J H, Li L. Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/mazie intercropping system. Acta Ecol Sin, 2011, 31: 1617–1630 (in Chinese with English abstract).

[39] 赵士诚, 裴雪霞, 何萍, 张秀芝, 李科江, 周卫, 梁国庆, 金继运. 氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响. 植物营养与肥料学报, 2010, 16: 492–497.
Zhao S C, Pei X X, He P, Zhang X Z, Li K J, Zhou W, Liang G Q, Jin J Y. Effects of reducing and postponing nitrogen application on soil N supply, plant N uptake and utilization of summer maize. Plant Nutr Fert Sci, 2010, 16: 492–497 (in Chinese with English abstract)

[1] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[2] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响[J]. 作物学报, 2023, 49(11): 3131-3140.
[3] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[4] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[5] 杨恒山, 张雨珊, 葛选良, 李维敏, 郭子赫, 郭暖. 浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响[J]. 作物学报, 2022, 48(10): 2614-2624.
[6] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[7] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[8] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[9] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[10] 何丹丹,贾立国,秦永林,樊明寿. 不同马铃薯品种的氮利用效率及其分类研究[J]. 作物学报, 2019, 45(1): 153-159.
[11] 安建刚,敬夫,丁祎,肖怡,尚浩浩,李宏利,杨晓璐,唐道彬,王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响[J]. 作物学报, 2018, 44(12): 1858-1866.
[12] 李法计,徐学欣,肖永贵,何中虎,王志敏. 不同氮素处理对中麦175和京冬17产量相关性状和氮素利用效率的影响[J]. 作物学报, 2016, 42(12): 1853-1863.
[13] 滕园园**,赵财**,柴强*,胡发龙,冯福学 . 氮肥后移对玉米间作豌豆耗水特性的调控效应[J]. 作物学报, 2016, 42(03): 446-455.
[14] 武文明,陈洪俭,王世济,魏凤珍,李金才. 氮肥运筹对苗期受渍夏玉米干物质和氮素积累与转运的影响[J]. 作物学报, 2015, 41(08): 1246-1256.
[15] 王宜伦, 李潮海, 谭金芳, 张许, 刘天学. 氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响[J]. 作物学报, 2011, 37(02): 339-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!