欢迎访问作物学报,今天是

作物学报

• •    

小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选

鲁向前1,付玉洁1,赵俊恒1,郑楠楠1,孙楠楠1,张国平1,2,叶玲珍1,2,*   

  1. 1 浙江大学中原研究院生物设计与育种中心, 河南郑州450000; 2 浙江大学作物科学研究所, 浙江杭州310058
  • 收稿日期:2025-03-03 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-10
  • 基金资助:

    本研究由宁波市科技计划项目(2023S154)和浙江省农业新品种选育重大科技专项(2021C02064-3)资助。

Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture

LU Xiang-Qian1,FU Yu-Jie1,ZHAO Jun-Heng1,ZHENG Nan-Nan1,SUN Nan-Nan1,ZHANG Guo-Ping1,2,YE Ling-Zhen1,2,*   

  1. 1 Center for Biological Design and Breeding, Zhongyuan Research Institute, Zhejiang University, Zhengzhou 450000, Henan, China; 2 Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2025-03-03 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-10
  • Supported by:
    This study was supported by Ningbo Science and Technology Plan Project (2023S154) and Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (2021C02064-3).

摘要:

依赖花药培养的单倍体育种是小麦品种高效选育的重要方法,但花药培养效率品种间差异显著限制了该技术的广泛应用。目前已鉴定到4185H307和周麦16花药培养力的小麦品种()可用于规模小麦育种的高花药培养力材料明显不足。本研究系统鉴定全国94温室生长的小麦品种花药培养力相关性状结果表明,94个品种的花药最佳取样时期在幼穗顶部与叶耳距离为-5~2 cm,其中-2 cm取样最多且在温室和田间2种环境下生长的供试材料,其花药最佳取样时期的穗部形态特征也有差异94个温室生长的小麦品种花药培养愈伤组织诱导率、绿芽分化率、白芽分化率及绿苗产率的变分别为0~15%0~100%0~60%0~22.95%,愈伤诱导率与绿芽分化率、白芽分化率及绿苗产率均呈极显著正相关2种环境下生长的供试材料,其花药培养愈伤诱导率表现一致。在94个品种中,14个品种的绿苗产率超过1%,其中6个品种达到高花药培养力标准,且农艺性状优良,可用于小麦单倍体创制与育种。本研究为小麦单倍体育种提供了实用技术与种质材料。

关键词: 小麦, 双单倍体, 花药培养, 高花药培养力, 育种应用

Abstract:

Haploid breeding based on anther culture is an important method for the efficient selection of wheat varieties. However, the efficiency of anther culture varies significantly among different wheat genotypes, which limits its broader application in wheat breeding. To date, a few wheat lines with high anther culture efficiency—such as Shi4185, H307, and Zhoumai16—have been identified. Nevertheless, there remains a lack of sufficient high-performing materials to support large-scale application of this technique. In this study, we systematically evaluated anther culture-related traits in 94 wheat varieties grown under greenhouse conditions. The optimal anther sampling stage for these varieties was determined to occur when the distance between the tip of the developing spike and the leaf auricle ranged from ?5 cm to 2 cm, with the highest sampling frequency observed at ?2 cm. Notably, spike morphological characteristics associated with the optimal sampling period differed between plants grown under greenhouse and field conditions. Among the 94 greenhouse-grown varieties, the callus induction rate, green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate during anther culture ranged from 0–15%, 0–100%, 0–60%, and 0–22.95%, respectively. The callus induction rate showed highly significant positive correlations with the green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate. Moreover, the callus induction rate exhibited consistent performance across both greenhouse and field conditions. Of the 94 varieties tested, 14 exhibited green plantlet production rates exceeding 1%, and 6 varieties met the criteria for high anther culture efficiency while also demonstrating excellent agronomic traits. These varieties represent valuable germplasm resources for haploid breeding in wheat. This study provides practical techniques and genetic materials to support the advancement of wheat haploid breeding programs.

Key words: wheat, double haploid, anther culture, high anther culture ability, breeding application

[1] Ferrie A M R, Bhowmik P, Rajagopalan N, Kagale S. CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. Methods Mol Biol, 2020, 2072: 183–198.
[2] Srivastava P, Bains N S. Biotechnol Crop Improvement, Volume 1. Switzerland: Springer International Publishing AG, 2018.
[3] Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv, 2022, 60: 108007.
[4] 王炜, 叶春雷, 杨随庄, 陈琛, 罗俊杰. 花药培养技术在小麦种质资源创制及育种中的应用. 中国种业, 2018, (11): 25–29.
Wang W, Ye C L, Yang S Z, Chen C, Luo J J. Application of Anther culture technique in wheat germplasm creation and breeding. China Seed Ind, 2018, (11): 25–29 (in Chinese with English abstract).
[5] 李辉, 陈孝, 辛志勇, 马有志, 徐惠君. 普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定. 中国农业科学, 1999, 32: 9–17.
Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J. Development and identification of wheat-Haynaldia villosa 6DL/6VS translocation lines with powdery mildew resistance. Sci Agric Sin, 1999, 32: 9–17 (in Chinese with English abstract).
[6] 翁跃进, 董玉琛. 普通小麦—顶芒山羊草异源附加系的创建和鉴定: Ⅰ. 小麦花药培养对创建普通小麦–顶芒山羊草异源附加系的作用. 作物学报, 1995, 21: 39–44.
Weng Y J, Dong Y C. Development of Aegilops comosa addition lines in common wheat (Triticum aestivum L.) Ⅰ. effection of wheat anther culture to development of Aegilops comosa addition lines in common wheat. Acta Agron Sin, 1995, 21: 39–44 (in Chinese with English abstract).
[7] 刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶. 植物诱发突变技术育种研究现状与展望. 核农学报, 2009, 23: 1001–1007.
Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J. Current status and outlook perspectives of induced mutations for plant improvement. J Nucl Agric Sci, 2009, 23: 1001–1007 (in Chinese with English abstract).
[8] Orłowska R, Pachota K A, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek P T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol, 2020, 43: 8–15.
[9] Germanà M A. Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult, 2011, 104: 283–300.
[10] 高润红, 郭桂梅, 何婷, 杜志钊, 任金宝, 刘成洪, 陆瑞菊. 大麦旗叶距对小孢子发育时期、愈伤组织诱导以及绿苗再生的影响. 南京农业大学学报, 2021, 44: 36–41.
Gao R H, Guo G M, He T, Du Z Z, Ren J B, Liu C H, Lu R J. Effects of the flag leaf space on microspore developmental stage, callus induction and green plant regeneration in barley. J Nanjing Agric Univ, 2021, 44: 36–41 (in Chinese with English abstract).
[11] Mayakaduwa D M R G, Silva T D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in Indica rice (Oryza sativa L.). Vitro Cell Dev Biol Plant, 2017, 53: 591–597.
[12] Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Kapłoniak K, Pilipowicz M, Skrzypek E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitro Cell Dev Biol Plant, 2019, 55: 595–604.
[13] Lantos C, Weyen J, Orsini J M, Gnad H, Schlieter B, Lein V, Kontowski S, Jacobi A, MihÁly R, Broughton S, et al. Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breed, 2013, 132: 149–154.
[14] Santra M, Ankrah N, Santra D K, Kidwell K K. An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci, 2012, 52: 2314–2320.
[15] 赵林姝, 刘录祥, 古佳玉, 谢永盾, 郭会君, 赵世荣, 李军辉, 熊宏春. 冬小麦高花药培养力基因型的筛选. 麦类作物学报, 2017, 37: 1294–1300.
Zhao L S, Liu L X, Gu J Y, Xie Y D, Guo H J, Zhao S R, Li J H, Xiong H C. Screening of winter wheat germplasms with high anther culture ability. J Triticeae Crops, 2017, 37: 1294–1300 (in Chinese with English abstract).
[16] 吕学莲, 白海波, 蔡正云, 董建力, 高晓原, 陈雪, 李树华. 小麦花药培养的基因型效应及优良基因型筛选. 中国农学通报, 2011, 27(33): 13–17.
Lyu X L, Bai H B, Cai Z Y, Dong J L, Gao X Y, Chen X, Li S H. Effect of genotype on wheat anther culture and selection of choiceness genotype. Chin Agric Sci Bull, 2011, 27(33): 13–17 (in Chinese with English abstract).
[17] 姜秀芳, 郑继周, 邓春霞, 韩玉林, 王凤真. 小麦花培材料的筛选和利用. 中国农学通报, 2005, 21(2): 62–64.
Jiang X F, Zheng J Z, Deng C X, Han Y L, Wang F Z. Screening and utilization of wheat flower culture materials. Chin Agric Sci Bull, 2005, 21(2): 62–64 (in Chinese with English abstract).
[18] 王炜, 陈琛, 叶春雷, 贺小宝, 杜旺喜, 王云贵, 杨芳萍, 杨文雄, 杨随庄, 王方, 等. 甘肃主栽小麦品种及骨干亲本花药培养特性评价及分析. 核农学报, 2016, 30: 1059–1066.
Wang W, Chen C, Ye C L, He X B, Du W X, Wang Y G, Yang F P, Yang W X, Yang S Z, Wang F, et al. Evaluation and analysis of anther culture characteristics in Gansu wheat cultivars and backbone parents. J Nucl Agric Sci, 2016, 30: 1059–1066 (in Chinese with English abstract).
[19] 朱建楚, 贺学礼, 王辉. 西农1376小麦早熟高产的生物学特性分析. 麦类作物学报, 1996, 27: 31–33.
Zhu J C, He X L, Wang H. Biological characteristics of early maturity and high yield of Xinong 1376 wheat. J Triticeae Crops, 1996, 27: 31–33 (in Chinese).
[20] 朱有朋, 郭春燕, 孙文鑫, 马彩艳, 袁水泉, 詹克慧. 小麦骨干亲本豫麦2号的育种价值分析. 中国农学通报, 2009, 25(19): 50–54.
Zhu Y P, Guo C Y, Sun W X, Ma C Y, Yuan S Q, Zhan K H. Breeding value of the wheat corner stone parent Yumai 2. Chin Agric Sci Bull, 2009, 25(19): 50–54 (in Chinese with English abstract). 
[21] 张勇, 阎俊, 肖永贵, 郝元峰, 张艳, 徐开杰, 曹双河, 田宇兵, 李思敏, 闫俊良, 等. 中麦895高产稳产优质特性遗传解析. 中国农业科学, 2021, 54: 3158–3167.
Zhang Y, Yan J, Xiao Y G, Hao Y F, Zhang Y, Xu K J, Cao S H, Tian Y B, Li S M, Yan J L, et al. Characterization of wheat cultivar Zhongmai 895 with high yield potential, broad adaptability, and good quality. Sci Agric Sin. 2021, 54: 3158–3167 (in Chinese with English abstract).
[22] 李慧, 赵林姝, 古佳玉, 郭会君, 谢永盾, 熊宏春, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦花药培养体系优化及高再生力基因型的筛选. 植物遗传资源学报, 2022, 23: 738–745 
Li H, Zhao L S, Gu J Y, Guo H J, Xie Y D, Xiong H C, Zhao S R, Ding Y P, Xu Y H, Liu L X. Optimizing of anther culture system and screening wheat genotypes with higher regeneration ability. J Plant Genetic Resour, 2022, 23: 738–745 (in Chinese with English abstract).
[23] 蔡正云, 吕学莲, 白海波, 董建力, 段敦亮, 李树华, 魏亦勤. 基因型对小麦花药培养的影响研究. 广东农业科学, 2014, 41(24): 1–5.
Cai Z Y, Lyu X L, Bai H B, Dong J L, Duan D L, Li S H, Wei Y Q. Effects of genotypes on wheat anther culture. Guangdong Agric Sci, 2014, 41(24): 1–5 (in Chinese with English abstract).
[24] 王宁, 许铭, 王建锋, 王浩庭, 韩德俊, 康振生, 韩青梅. 转LTP基因T0代小麦的获得及抗条锈病鉴定. 中国农业大学学报, 2015, 20(3): 9–14.
Wang N, Xu M, Wang J F, Wang H T, Han D J, Kang Z S, Han Q M. Wheat T0 generation of transgenic LTP genes and identification of resistance to stripe rust. J China Agric Univ, 2015, 20(3): 9–14 (in Chinese with English abstract).
[1] 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547.
[2] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[3] 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557.
[4] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[5] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[6] 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247.
[7] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[8] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[9] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[10] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[11] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[12] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[13] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[14] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[15] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!