欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1710-1718.doi: 10.3724/SP.J.1006.2024.31060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位

韩丽1(), 汤胜胜1, 李佳1, 胡海斌2, 刘龙龙1,*(), 吴斌2,*()   

  1. 1山西农业大学农业基因资源研究中心 / 农业农村部黄土高原作物基因资源与种质创新重点实验室, 山西太原 030031
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-10-24 接受日期:2024-01-31 出版日期:2024-07-12 网络出版日期:2024-03-07
  • 通讯作者: *刘龙龙, E-mail: lllong781211@sina.com;吴斌, E-mail: wubin03@caas.cn
  • 作者简介:E-mail: 3105141954@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-A);国家自然科学基金项目(30800699)

Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats

HAN Li1(), TANG Sheng-Sheng1, LI Jia1, HU Hai-Bin2, LIU Long-Long1,*(), WU Bin2,*()   

  1. 1Center for Agricultural Genetic, Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriclture and Rural Affairs, Taiyuan 030031, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-10-24 Accepted:2024-01-31 Published:2024-07-12 Published online:2024-03-07
  • Contact: *E-mail: lllong781211@sina.com; E-mail: wubin03@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-07-A);National Natural Science Foundation of China(30800699)

摘要:

β-葡聚糖是燕麦发挥保健作用的主要功能因子, 提高其含量对优质燕麦生产有着重要意义。为促进高β-葡聚糖燕麦种质资源的有效利用和相关基因发掘, 本研究以高β-葡聚糖品种夏莜麦和低β-葡聚糖品种赤38组配衍生的219个家系RIL8群体为材料, 利用重测序技术构建了包含21个连锁群, 5032个bin标记的遗传连锁图谱, 图谱总长2045.09 cM, 平均图距0.42 cM。利用标准酶法和近红外法对4个环境的RIL群体家系β-葡聚糖含量进行测定, 结合测定结果, 利用完备区间作图法对β-葡聚糖含量进行QTL定位分析, 结果显示不同环境条件下RIL群体β-葡聚糖含量呈正态分布, 并出现超亲后代家系, 4个环境下群体β-葡聚糖含量变异系数介于9.06%~16.63%之间。QTL定位检测到7个与燕麦β-葡聚糖含量相关的QTL, 分布于2D、3D、4C和4D染色体上, 其中贡献率最高为14.73%, 在2个环境中检测到同一个QTL, 其标记区间为Chr4C_mark8361257-Chr4C_mark8384831。研究结果将为燕麦β-葡聚糖分子标记辅助育种提供重要的理论依据。

关键词: 燕麦, SNP, 遗传图谱, β-葡聚糖, QTL定位

Abstract:

β-glucan is the main functional component of oats for health care, and improving its content is of great significance to the production of high-quality oats. In this study, in order to promote the effective utilization of high β-glucan oat germplasm resources and the discovery of related genes, a genetic linkage map containing 21 linkage groups and 5032 bin markers was constructed by using resequencing technology with the 223 RIL8 populations derived from the high β-glucan variety Xiayoumai and the low β-glucan resource Chi38. The total length of the map was 2045.09 cM, and the average plot distance was 0.42 cM. The β-glucan content of RIL populations in four environments was determined by standard enzyme method and near infrared method. Combined with the determination results, QTL analysis of β-glucan content was performed by complete interval mapping method. The results showed that the β-glucan content of RIL populations was normally distributed under different environmental conditions, and there were superparent descendants. The coefficient of variation of β-glucan content in the four environments ranged from 9.06% to 16.63%. Seven QTLs related to β-glucan content in oat were detected by QTL mapping, distributed on 2D, 3D, 4C, and 4D chromosomes, with the highest contribution rate of 14.73%. The same QTL was detected in two environments with a marker interval of Chr4C_mark8361257-Chr4C_mark8384831. The results of this study provide an important theoretical basis for molecular marker-assisted breeding of oat β-glucan.

Key words: oat, SNP, genetic map, β-glucan, QTL mapping

表1

亲本及RIL群体燕麦β-葡聚糖含量的统计分析"

试点
Location
亲本 Parents RIL群体 RIL population
赤38
Chi 38 (%)
夏莜麦
Xiayoumai (%)
范围
Range
平均值
Mean (%)
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
遗传力
Heritability
北京Beijing 4.06 6.52 2.92-6.95 5.11 16.63 -0.33 -0.08 0.95
山西Shanxi 4.14 5.68 3.59-5.84 4.83 9.11 -0.07 -0.39 0.90
新疆Xinjiang 5.08 6.01 4.47-6.48 5.49 6.21 0.13 0.41 0.94
河北Hebei 4.84 5.68 4.71-7.29 5.63 9.06 0.89 0.73 0.86

图1

不同环境下RIL群体燕麦β-葡聚糖含量的频率分布图 BJ、SX、XJ和HB分别代表北京、山西、新疆和河北4个环境。"

表2

不同环境下 RIL 群体燕麦β-葡聚糖含量的联合方差分析"

变异来源
Source
自由度
DF
离均差平方和
SS
均方
MS
F
F-value
P
P-value
基因型 Genotype 218 110.58 0.51 1.94 < 0.010
环境 Environment 3 89.06 29.69 113.57 < 0.010
基因型×环境 GE interaction 654 170.95 0.26 < 0.010
残差 Residual 216 17.76 0.08
总变异 Total 875 370.58

表3

遗传图谱信息"

染色体
Chr.
SNP数量
Number of
SNP
Bin标记数量
Number of Bin
marker
总遗传距离
Total distance
(cM)
平均遗传距离
Average marker interval
(cM)
最大
Max. interval
(cM)
1A 6316 304 135.06 0.44 10.26
1C 2076 79 29.91 0.38 2.43
1D 10,517 273 116.85 0.43 3.13
2A 3174 219 84.61 0.39 7.99
2C 8185 206 85.27 0.41 3.21
2D 14,888 425 158.68 0.37 4.40
3A 53,092 137 55.46 0.40 3.85
3C 22,630 231 81.24 0.35 2.65
3D 11,396 354 160.97 0.45 11.72
4A 7407 278 135.66 0.49 12.67
4C 100,146 300 120.65 0.40 12.85
4D 23,126 491 194.12 0.40 8.81
5A 141,190 85 49.91 0.59 7.92
5C 91,777 392 104.23 0.27 1.92
5D 48,610 147 52.51 0.36 1.97
6A 10,996 190 78.26 0.41 4.51
6C 25,948 302 124.40 0.41 5.25
6D 3253 165 77.76 0.47 5.78
7A 6105 161 58.28 0.36 1.98
7C 10,390 182 90.39 0.50 4.95
7D 8264 111 50.87 0.46 3.90
总计 Total 609,486 5032 2045.09 0.42 12.85

表4

4个环境β-葡聚糖含量QTL定位结果"

地点
Location
数量性状位点
QTL
染色体
Chr.
位置
Position (cM)
标记区间
Marked interval
加性效应
Additive
effect
LOD值
Likelihood
of odd
贡献率
Contribution rate (%)
北京Beijing qBG9-1 3D 73 mark52899524-mark56792010 0.1856 3.5566 7.4766
qBG12-1 4D 131.5 mark359462864-mark359731564 0.1730 2.8829 6.1583
山西Shanxi qBG9-2 3D 103 mark345485656-mark345492373 0.1406 5.0331 10.2452
qBG11-1 4C 0.5 mark8361257-mark8384831 -0.1389 4.9324 9.9790
新疆Xinjiang qBG11-1 4C 0.5 mark8361257-mark8384831 -0.1250 5.6343 14.7268
河北Hebei qBG6-1 2D 37 mark72268394-mark72566672 0.1327 3.6026 6.2789
qBG11-2 4C 115 mark704833011-mark708537606 -0.1439 2.9495 6.9865
qBG12-2 4D 38 mark40330973-mark40622203 0.1172 2.6276 4.6057

图2

燕麦染色体上定位的β-葡聚糖含量QTL 连锁群右边是标记名称, 左边是遗传位置(cM), QTL右边对应LOD值。图中4个颜色代表4个环境, 对应规则如下: 蓝色: 北京; 红色: 河北; 绿色: 新疆; 橙色: 山西。"

[1] 陆大彪. 燕麦. 作物杂志, 1985, (1): 28.
Lu D B. Oats. Crops, 1985, (1): 28 (in Chinese).
[2] Shewry P R, Piironen V, Lampi A M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin C M, Delcour J A, Andersson A A, Dimberg L, Bedo Z, Ward J L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem, 2008, 56: 9777-9784.
[3] Kendall C W C, Esfahani A, Jenkins D J A. The link between dietary fibre and human health. Food Hydrocoll, 2010, 24: 42-48.
[4] Beer M U, Wood P J, Weisz J, Fillion N. Effect of cooking and storage on the amount and molecular weight of (1→3) (1→4)-β- D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem, 1997, 74: 705-709.
[5] Ballabio C, Uberti F, Manferdelli S, Vacca E G, Boggini G, Redaelli R, Catassi C, Lionetti E, Peñas E, Restani P. Molecular characterization of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. J Cereal Sci, 2011, 54: 110-115.
[6] Fincher G B, Stone B. Cell walls and their components in cereal grain technology. In: Advances in Cereal Science and Technology, USA, 1986, Vol. 8.
[7] Wang Y, Liu J, Chen F, Zhao G. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J Agric Food Chem, 2013, 61: 4533-4538.
[8] Bacic A, Stone B. A (1→3)- and (1→4)-linked β-D-glucan in the endosperm cell-walls of wheat. Carbohydr Res, 1980, 82: 372-377.
[9] Saulnier L, Péneau N, Thibault J F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci, 1995, 22: 259-264.
[10] Yun C H, Estrada A, Van Kessel A, Gajadhar A A, Redmond M J, Laarveld B. β-(1→3, 1→4) oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int J Parasitol, 1997, 27: 329-337.
doi: 10.1016/s0020-7519(96)00178-6 pmid: 9138036
[11] 申瑞玲, 王章存, 董吉林, 姚惠源. 燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响. 营养学报, 2006, 28: 430-433.
Shen R L, Wang Z C, Dong J L, Yao H Y. Effect of oat β-glucan on colon flora and its function in mice. Acta Nutr Sin, 2006, 28: 430-433 (in Chinese with English abstract).
[12] Wood P J, Braaten J T, Scott F W, Riedel K D, Wolynetz M S, Collins M W. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Brit J Nutr, 1994, 72: 731-743.
pmid: 7826996
[13] 张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016, 49: 4284-4298.
doi: 10.3864/j.issn.0578-1752.2016.22.003
Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Research progress in wheat nutrition and health quality. Chin Agric Sci, 2016, 49: 4284-4298 (in Chinese with English abstract).
[14] Kianian S, Phillips R, Rines H, Fulcher R, Webster F, Stuthman D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet, 2000, 101: 1039-1048.
[15] Groh S, Kianian S, Phillips R, Rines H, Stuthman D, Wesenberg D, Fulcher R. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet, 2001, 103: 9-18.
[16] Tanhuanpää P, Manninen O, Beattie A, Eckstein P, Scoles G, Rossnagel B, Kiviharju E. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 2012, 55: 289-301.
doi: 10.1139/G2012-017 pmid: 22443510
[17] Herrmann M H, Yu J Z, Steffen B, Wilhelm E W. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breed, 2014, 133: 588-601.
[18] 吴斌, 张茜, 宋高原, 陈新, 张宗文. 裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位. 中国农业科学, 2014, 47: 1208-1215.
doi: 10.3864/j.issn.0578-1752.2014.06.017
Wu B, Zhang Q, Song G Y, Chen X, Zhang Z W. Construction of SSR marked linkage group map for bare oats and its application β-localization of QTL for glucan content. Sci Agric Sci, 2014, 47: 1208-1215 (in Chinese with English abstract).
[19] Zimmer C M, McNish I G, Klos K E, Oro T, Arruda K M A, Gutkoski L C, Pacheco M T, Smith K P, Federizzi L C. Genome- wide association for β-glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Mol Breed: New Strat Plant Improv, 2020, 40: 103.
[20] 吕耀昌, 王强, 赵炜, 邓万和. 燕麦、大麦中β-葡聚糖的酶法测定. 食品科学, 2005, 26: 180-182.
Lyu Y C, Wang Q, Zhao W, Deng W H. Oats and barley β-enzymatic determination of dextran. Food Sci, 2005, 26: 180-182 (in Chinese with English abstract).
[21] Henry R J. Near-infrared reflectance analysis of carbohydrates and its application to the determination of (1→3), (1→4)-β-D- glucan in barley. Carbohydr Res, 1985, 141: 13-19.
[22] Meng L, Hui H L, Lu Y Z, Jian K W. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[23] McCouch S, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[24] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to several common problems in quantitative trait gene mapping research. Acta Agron Sin, 2010, 36: 918-931 (in Chinese with English abstract).
[25] O’Donoughue L S, Sorrells M E, Tanksley S D, Autrique E, Deynze A V, Kianian S F, Phillips R L, Wu B, Rines H W, Rayapati P J, Lee M, Penner G A, Fedak G, Molnar S J, Hoffman D, Salas C A. A molecular linkage map of cultivated oat. Genome, 1995, 38: 368-380.
pmid: 18470176
[26] Chaffin A, Huang Y, Smith S M, Bekele W A, Babiker E M, Gnanesh B N, Foresman B J, Blanchard S G, Jay J J, Reid R W, Wight C P, Chao S, Oliver R E, Islamovic E, Kolb F L, McCartney C A, Mitchell Fetch J W, Beattie A D, Bjornstad Å, Bonman J M, Langdon T, Howarth C J, Brouwer C R, Jellen E N, Klos K E, Poland J A, Hsieh T, Brown R H, Jackson E W, Schlueter J, Tinker N A. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genom, 2016, 9(2): 1-21.
[27] Huang Y F, Poland J A, Wight C P, Jackson E W, Tinker N A. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One, 2014, 9: e102448.
[28] Bekele W A, Wight C P, Chao S, Howarth C J, Tinker N A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J, 2018, 16: 1452-1463.
doi: 10.1111/pbi.12888 pmid: 29345800
[29] Kono T J, Seth K, Poland J A, Morrell P L. SNPMeta: SNP annotation and SNP metadata collection without a reference genome. Mol Ecol Resour, 2014, 14: 419-425.
doi: 10.1111/1755-0998.12183 pmid: 24237904
[30] Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet, 2021, 134: 2767-2776.
doi: 10.1007/s00122-021-03857-4 pmid: 34021769
[31] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
[32] Fogarty M C, Smith S M, Sheridan J L, Hu G, Islamovic E, Reid R, Jackson E W, Maughan P J, Ames N P, Jellen E N, Hsieh T. Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homeologs in hexaploid oat. Crop Sci, 2020, 60: 914-933.
[33] Tinker N A, Wight C P, Bekele W A, Yan W, Jellen E N, Renhuldt N T, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol, 2022, 5: 474.
[34] Burton R A, Wilson S M, Hrmova M, Harvey A J, Shirley N J, Medhurst A, Stone B A, Newbigin E J, Bacic A, Fincher G B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 2006, 311: 1940-1942.
doi: 10.1126/science.1122975 pmid: 16574868
[35] Doblin M S, Pettolino F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 5996-6001.
[36] Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O’Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018, 177: 1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036
[37] Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet, 2022, 54: 1248-1258.
[38] Bernal A J, Jensen J K, Harholt J, Sørensen S, Moller I, Blaukopf C, Johansen B, Lotto R D, Pauly M, Scheller H V, Willats W G. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J, 2007, 52: 791-802.
[1] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[2] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[3] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[4] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[5] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[6] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[7] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[8] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[9] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[10] 南金生, 安江红, 柴明娜, 蒋屿潋, 朱志强, 杨燕, 韩冰. 淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究[J]. 作物学报, 2023, 49(9): 2552-2561.
[11] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[12] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[13] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[14] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[15] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[7] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[8] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .
[9] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[10] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .