作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1207-1222.doi: 10.3724/SP.J.1006.2024.33046
韩洁楠1(), 张泽1,2, 刘晓丽1, 李冉1, 上官小川1,2, 周婷芳1,2, 潘越1, 郝转芳1, 翁建峰1, 雍洪军1, 周志强1, 徐晶宇2, 李新海1,2, 李明顺1,*(
)
HAN Jie-Nan1(), ZHANG Ze1,2, LIU Xiao-Li1, LI Ran1, SHANG-GUAN Xiao-Chuan1,2, ZHOU Ting-Fang1,2, PAN Yue1, HAO Zhuan-Fang1, WENG Jian-Feng1, YONG Hong-Jun1, ZHOU Zhi-Qiang1, XU Jing-Yu2, LI Xin-Hai1,2, LI Ming-Shun1,*(
)
摘要:
糯玉米是主要鲜食玉米类型, opaque2 (o2)基因导入可增加籽粒赖氨酸含量, 但同时引起籽粒皱缩、淀粉含量下降等, 限制了其育种应用。为发掘优良糯玉米受体, 以籽粒饱满圆型o2近等基因系(o2-NIL)糯2/wx1wx1o2o2和皱缩型黄糯2/wx1wx1o2o2为研究材料, 通过对鲜食期、成熟期的百粒重和籽粒成分测定, 发现淀粉和可溶性糖含量不同可能是导致2份糯玉米o2-NILs表型差异的主要原因。利用实时荧光定量PCR技术分析, 发现授粉后10~24 d两糯玉米o2-NILs中6个淀粉合成基因动态表达模式不同, 其中Sh1、Sh2、SSIIIa和SBEIIb差异较大。分析胚乳转录组数据, 发现两糯玉米o2-NILs中24个海藻糖和糖基水解酶编码基因和48个o2胚乳修饰基因变化不同, 以上结果表明淀粉合成关键基因前期表达量高, 后期与对照无差异, 且糖代谢基因表达变化有利于淀粉合成可能是糯2/wx1wx1o2o2淀粉含量和百粒重不受o2突变影响, 籽粒性状明显优于黄糯2/wx1wx1o2o2的重要原因, 同时多个胚乳修饰基因的差异表达可能与该结果直接相关。本研究结果可为o2突变体在玉米育种中的应用提供重要参考。
[1] |
Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289-311.
doi: 10.1002/(ISSN)1097-0010 |
[2] |
Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145: 279-280.
doi: 10.1126/science.145.3629.279 pmid: 14171571 |
[3] |
Paez A V, Helm J L, Zuber M S. Lysine content of opaque2 maize kernels having different phenotypes. Crop Sci, 1969, 9: 251-253.
doi: 10.2135/cropsci1969.0011183X000900020045x |
[4] |
Gibbon B C, Larkins B A. Molecular genetic approaches to developing quality protein maize. Trends Genet, 2005, 21: 227-233.
pmid: 15797618 |
[5] | 石德权. 优质蛋白玉米. 北京: 中国农业出版社, 1995. |
Shi D Q. High Quality Protein Maize. Beijing: China Agriculture Press, 1995 (in Chinese). | |
[6] | 曾孟潜. 我国糯质玉米的亲缘关系. 作物品种资源, 1987, (3): 4. |
Zeng M Q. The affinities of glutinous maize in China. Chin Seed Industry, 1987, (3): 4 (in Chinese). | |
[7] |
Zheng H J, Wang H, Yang H, Wu J H, Shi B, Cai R, Xu Y B, Wu A Z, Luo L J. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One, 2013, 8: e66606.
doi: 10.1371/journal.pone.0066606 |
[8] | 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71. |
Zhao J R, Lu B S, Shi Y X, Xu L. Dynamics of breeding and industrial development of glutinous maize in China. J Maize Sci, 2016, 24(4): 67-71 (in Chinese with English abstract). | |
[9] | Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet maize lines differing in physical and chemical composition. J Food Sci, 1996, 61: 253-257. |
[10] |
Simla S, Lertrat K, Suriharn B. Carbohydrate characters of six vegetable waxy maize varieties as affected by harvest time and storage duration. Asian J Plant Sci, 2010, 9: 463-470.
doi: 10.3923/ajps.2010.463.470 |
[11] | 杨引福, 郭强, 陈婧, 郑小亚, 蔺崇明. 中国温带糯玉米自交系遗传及品质性状分析. 西北农业学报, 2009, 29: 2213-2220. |
Yang Y F, Guo Q, Chen J, Zheng X Y, Lin C M. Analysis of genetic quality traits in temperate glutinous maize inbred lines in China. Acta Bot Boreali-Occident Sin, 2009, 29: 2213-2220 (in Chinese with English abstract). | |
[12] | Young V R, Scrimshaw N S. Significance of Dietary Protein Source in Human Nutrition:Animal and/or Plant Proteins? online edn. New York: Oxford Academic, 1998. pp 205-221. |
[13] |
Misra P S, Jambunathan R, Mertz E T, Glover D V, Barbosa H M, McWhirter K S. Endosperm protein synthesis in maize mutants with increased lysine content. Science, 1972, 176: 1425-1427.
pmid: 17834650 |
[14] | 张述宽, 滕辉升, 苏琪, 杨耀迥. 应用SSR辅助选择技术选育优质蛋白糯玉米自交系. 广西农业科学, 2009, 40: 1279-1283. |
Zhang S K, Teng H S, Su Q, Yang Y J. Application of SSR-assisted selection technology to select high-quality protein glutinous maize inbred lines. J Guangxi Agric Sci, 2009, 40: 1279-1283 (in Chinese with English abstract). | |
[15] |
Sinkangam B, Stamp P, Srinives P, Jompuk P, Mongkol W, Porniyom A, Dang N C, Jompuk C. Integration of quality protein in waxy maize by means of simple sequence repeat markers. Crop Sci, 2011, 51: 2499-2504.
doi: 10.2135/cropsci2011.05.0271 |
[16] |
Zhou Z Q, Song L Y, Zhang X X, Li X H, Yan N, Xia R P, Zhu H, Weng J F, Hao Z F, Zhang D G, Yong H J, Li M S, Zhang S H. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One, 2016, 11: e0161924.
doi: 10.1371/journal.pone.0161924 |
[17] |
Dang N C, Munsch M, Aulinger I, Renlai W, Stamp P. Inducer line generated double haploid seeds for combined waxy and opaque 2 grain quality in subtropical maize (Zea may L.). Euphytica, 2012, 183: 153-160.
doi: 10.1007/s10681-011-0423-0 |
[18] |
Jia H W, Nettleton D, Peterson J M, Vazquez-Carrillo G, Jannink J L, Scott M P. Comparison of transcript profiles in wild-type and o2 maize endosperm in different genetic backgrounds. Crop Sci, 2007, 47(S1): 45-59.
doi: 10.2135/cropsci2006.03.0207 |
[19] |
Frizzi A, Caldo R A, Morrell J A, Wang M, Lutfiyya L L, Brown W E, Malvar T M, Huang S S. Compositional and transcriptional analyses of reduced zein kernels derived from the opaque2 mutation and RNAi suppression. Plant Mol Biol, 2010, 73: 569-585.
doi: 10.1007/s11103-010-9644-1 |
[20] |
Jia M, Wu H, Clay K L, Jung R, Larkins B A, Gibbon B C. Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2mutant by transcriptional and proteomic analysis. BMC Plant Biol, 2013, 13: 60.
doi: 10.1186/1471-2229-13-60 pmid: 23586588 |
[21] |
Li C B, Qiao Z Y, Qi W W, Wang Q, Yuan Y, Yang X, Tang Y P, Mei B, Lyu Y D, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell, 2015, 27: 532-545.
doi: 10.1105/tpc.114.134858 |
[22] |
Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
doi: 10.1073/pnas.1613721113 |
[23] |
Zhan J P, Li G S, Ryu C-H, Ma C, Zhang S S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X F, Yadegari R. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell, 2018, 30: 2425-2446.
doi: 10.1105/tpc.18.00392 |
[24] | 陈亮, 张德贵, 史振声, 赵刚, 白丽, 张世煌, 李明顺. Opaque- 2突变基因(o2)对玉米产量和产量配合力的影响. 玉米科学, 2011, 19(1): 8-13. |
Chen L, Zhang D G, Shi Z S, Zhao G, Bai L, Zhang S H, Li M S. Effect of Opaque-2 mutant gene (o2) on yield and yield fitness of maize. J Maize Sci, 2011, 19(1): 8-13 (in Chinese with English abstract). | |
[25] | 宋丽雅, 陈亮, 何聪芬, 赵刚, 白鹏飞, 陈岩, 常驰. Opaque-2突变基因对玉米组合品质的影响. 安徽农业科学, 2012, 40: 9607-9609. |
Song L Y, Chen L, He C F, Zhao G, Bai P F, Chen Y, Chang C. Effect of Opaque-2 mutant gene on the quality of maize combinations. J Anhui Agric Sci, 2012, 40: 9607-9609 (in Chinese with English abstract). | |
[26] | 周昱婕, 韩洁楠, 王美娟, 刘晓丽, 李明顺. Opaque2基因对糯玉米子粒品质的影响分析. 玉米科学, 2021, 29(2): 29-34. |
Zhou Y J, Han J N, Wang M J, Liu X L, Li M S. Analysis of the effect of Opaque2 gene on kernel quality of glutinous maize. J Maize Sci, 2021, 29(2): 29-34 (in Chinese with English abstract). | |
[27] | 刘晓丽, 韩洁楠, 李冉, 郭增辉, 张德贵, 李明顺. Opaque2对糯玉米籽粒食味和营养品质的影响分析. 玉米科学, 2023, 31(4): 52-58. |
Liu X L, Han J N, Li R, Guo Z H, Zhang D G, Li M S. Analysis of the effect of opaque2 on flavour and nutritional quality of glutinous maize kernels. J Maize Sci, 2023, 31(4): 52-58 (in Chinese with English abstract). | |
[28] |
Wang W, Dai Y, Wang M C, Yang W P, Zhao D G. Transcriptome dynamics of double recessive mutant, o2o2o16o16, reveals the transcriptional mechanisms in the increase of its lysine and tryptophan content in maize. Genes, 2019, 10: 316.
doi: 10.3390/genes10040316 |
[29] | 谭华, 邹成林, 吴永升, 郑德波, 莫润秀, 黄爱花, 韦新兴, 蒋维萍, 韦慧, 黄开健. 不同遗传背景普通玉米种质导入opaque-2基因效应探讨. 广东农业科学, 2015, 42(23): 127-132. |
Tan H, Zou C L, Wu Y S, Zheng D B, Mo R X, Huang A H, Wei X X, Jiang W P, Wei H, Huang K J. Exploration of the effect of introducing opaque-2 gene in common maize germplasm with different genetic backgrounds. Guangdong Agric Sci, 2015, 42(23): 127-132 (in Chinese with English abstract). | |
[30] |
Prioul J L, Mechin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards K J. A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J, 2008, 6: 855-869.
pmid: 19548342 |
[31] |
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 pmid: 25037214 |
[32] |
Ji C, Xu L N, Li Y J, Fu Y X, Li S, Wang Q, Zeng X, Zhang Z Q, Zhang Z Y, Wang W Q, Wang J C, Wu Y R. The O2-ZmGRAS11transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Mol Plant, 2022, 15: 468-487.
doi: 10.1016/j.molp.2021.11.013 |
[33] |
Li N, Zhang S J, Zhao Y J, Li B, Zhang J R. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011, 233: 241-250.
doi: 10.1007/s00425-010-1296-5 pmid: 20978801 |
[34] |
Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205 |
[35] |
Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617 |
[36] |
Cobb B G, Hannah L C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol, 1988, 88: 1219-1221.
doi: 10.1104/pp.88.4.1219 pmid: 16666447 |
[37] |
Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907.
doi: 10.1111/pbi.v18.9 |
[38] |
Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith A M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol, 1996, 112: 779-785.
doi: 10.1104/pp.112.2.779 pmid: 8883389 |
[39] |
Jennings P H, McCombs C L. Effects of sugary-1 and shrunken-2 loci on kernel carbohydrate contents, phosphorylase and branching enzyme activities during maize kernel ontogeny. Phytochemistry, 1969, 8: 1357-1363.
doi: 10.1016/S0031-9422(00)85898-7 |
[40] |
Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891.
doi: 10.1104/pp.108.116244 pmid: 18263778 |
[41] |
Paul M J, Watson A, Griffiths C A. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans, 2020, 48: 2127-2137.
doi: 10.1042/BST20200286 |
[42] |
Meitzel T, Radchuk R, McAdam E L, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross J J, Lunn J E, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol, 2021, 229: 1553-1565.
doi: 10.1111/nph.v229.3 |
[43] |
Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA, 2005, 102: 11118-11123.
doi: 10.1073/pnas.0503410102 pmid: 16046541 |
[44] |
Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617 |
[45] |
Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn J E, Clément C. Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta, 2012, 236: 355-369.
doi: 10.1007/s00425-012-1611-4 pmid: 22367062 |
[46] |
Leyman B, Dijck P V, Thevelein J M. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci, 2001, 6: 510-513.
doi: 10.1016/s1360-1385(01)02125-2 pmid: 11701378 |
[47] |
Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol, 2005, 46: 1103-1115.
pmid: 15890680 |
[48] |
Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639 |
[49] |
German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer A A, Granot D. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 2003, 34: 837-846.
doi: 10.1046/j.1365-313x.2003.01765.x pmid: 12795703 |
[50] |
Urbanowicz B R, Bennett A B, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason S J, Patterson S E, Shoseyov O, Teeri T T, Rose J K. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol, 2007, 144: 1693-1696.
pmid: 17687051 |
[51] | 潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展. 食品科学, 2006, 27: 803-807. |
Pan L H, Luo J P. Progress of research and application of β-glucosidase. Food Sci, 2006, 27: 803-807 (in Chinese with English abstract). | |
[52] |
陈凯莉, 许轲, 张贤聪, 王亚楠, 汪志辉, 王迅. 果实中果胶代谢相关酶基因的研究进展. 园艺学报, 2017, 44: 2008-2014.
doi: 10.16420/j.issn.0513-353x.2016-0846 |
Chen K L, Xu K, Zhang X C, Wang Y N, Wang Z H, Wang X. Progress of pectin metabolism-related enzyme genes in fruits. Acta Hortic Sin, 2017, 44: 2008-2014 (in Chinese with English abstract). | |
[53] |
Godoy F D, Bermúdez L, Lira B S, Souza A P D, Elbl P, Dcmarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, FernieA R, Carrari F, Rossi M. Galacturonosyl transferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2013, 64: 2449-2466.
doi: 10.1093/jxb/ert106 |
[54] | 傅海, 赵佳, 李伟, 孙科, 王希信. 果胶酶研究进展及应用. 生物化工, 2020, 6(5): 148-153. |
Fu H, Zhao J, Li W, Sun K, Wang X X. Research progress and application of pectinase. Biochemistry, 2020, 6(5): 148-153 (in Chinese with English abstract). | |
[55] |
Segonne S M, Bruneau M, Celton J M, Gall S L, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Penou J P. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol, 2014, 14: 375.
doi: 10.1186/s12870-014-0375-3 pmid: 25551767 |
[56] |
Hennen-Bierwagen T A, Lin Q, Grimaud F, Planchot V, Keeling PL, James M G, Myers A M. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol, 2009, 149: 1541-1559.
doi: 10.1104/pp.109.135293 pmid: 19168640 |
[57] |
Wang W, Niu S Z, Dai Y, Wang M C, Li Y, Yang W P, Zhao D G. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-seq. Sci Rep, 2019, 9: 12265.
doi: 10.1038/s41598-019-48478-6 pmid: 31439855 |
[58] |
Lopes M A, Takasaki K, Bostwick D E, Helentjaris T, Larkins B A. Identification of two opaque2 modifier loci in quality protein maize. Mol Gen Genet, 1995, 247: 603-613.
doi: 10.1007/BF00290352 |
[59] |
Holding D R, Hunter B G, Chung T, Gibbo B C, Ford C F, Bharti A K, Messing J, Hamaker B R, Larkins B A. Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet, 2008, 117: 157-170.
doi: 10.1007/s00122-008-0762-y pmid: 18427771 |
[60] |
Holding D R, Hunter B G, Klingler J P, Wu S, Guo X M, Gibbon B C, Wu R L, Schulze J M, Jung R, Larkins B A. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred. Theor Appl Genet, 2011, 122: 783-794.
doi: 10.1007/s00122-010-1486-3 pmid: 21076810 |
[61] |
Li C S, Xiang X L, Huang Y C, Zhou Y, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q, Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun, 2020, 11: 17.
doi: 10.1038/s41467-019-14023-2 pmid: 31911615 |
[62] |
Guo X M, Ronhovde K, Yuan L L, Yao B, Soundararajan M P, Elthon T, Zhang C, Holding D R. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize. Plant Physiol, 2012, 158: 917-929.
doi: 10.1104/pp.111.191163 |
[63] |
Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007, 48: 1036-1049.
doi: 10.1093/pcp/pcm069 |
[64] |
Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. Plant Signal Behav, 2014, 9: e28194.
doi: 10.4161/psb.28194 |
[1] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[2] | 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064. |
[3] | 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463. |
[4] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[5] | 南金生, 安江红, 柴明娜, 蒋屿潋, 朱志强, 杨燕, 韩冰. 淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究[J]. 作物学报, 2023, 49(9): 2552-2561. |
[6] | 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978. |
[7] | 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454. |
[8] | 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101. |
[9] | 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718. |
[10] | 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832. |
[11] | 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646. |
[12] | 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249. |
[13] | 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653. |
[14] | 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853. |
[15] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
|