作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1193-1206.doi: 10.3724/SP.J.1006.2024.31049
陈家婷(), 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶*(
)
CHEN Jia-Ting(), BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi*(
)
摘要:
耐盐鉴定是筛选种质和选育耐盐小麦品种的前提。小麦室内耐盐鉴定方法较多, 涉及不同生育时期和组织器官。为了评估这些方法在生产上的适用性, 本研究选用北方冬麦区5个耐盐品种和5个盐敏感品种为试验材料, 对基于芽期和苗期的7种耐盐鉴定方法(涉及27个测试指标)进行实用性评价。结果显示, 利用小麦种子的发芽相对盐害率不能区分参试耐盐品种和盐敏感品种, 而小麦苗期的叶部盐害指数、根部Na+和K+流速以及根尖数、根径、叶片K+含量的相对盐害率在耐盐和盐敏感品种之间差异显著。综合回归分析结果和可操作性, 明确叶部盐害指数是北方冬麦区适用性较高的耐盐鉴定方法, 可结合根尖数相对盐害率、叶片K+含量相对盐害率或根部Na+和K+流速用于种质筛选或品种选育。本研究从适用程度方面解析和评价了耐盐鉴定方法, 为小麦耐盐育种工作提供参考信息。
[1] | Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan M U, Sarwar M I. A review: impact of salinity on plant growth. Nat Sci, 2019, 1: 34-40. |
[2] | 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895. |
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract). | |
[3] | 杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用. 中国科学院院刊, 2015, 30(增刊1): 162-170. |
Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China. Bull Chin Acad Sci, 2015, 30(S1): 162-170 (in Chinese with English abstract). | |
[4] | 邢锦城, 陈超, 董静, 刘冲, 朱小梅, 洪立洲. 长江中下游及黄淮冬麦区小麦主栽品种耐盐性评价. 大麦与谷类科学, 2017, 34(6): 8-13. |
Xing J C, Chen C, Dong J, Liu C, Zhu X M, Hong L Z. Evaluation of salt tolerance of main wheat cultivars planted in the middle and lower reaches of the Yangtze River and Huang Huai area. Barley Cereal Sci, 2017, 34(6): 8-13 (in Chinese with English abstract). | |
[5] |
Richards R A. Should selection for yield in saline conditions be made on saline or non-saline soils. Euphytica, 1983, 32: 431-438.
doi: 10.1007/BF00021452 |
[6] |
Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003, 253: 201-218.
doi: 10.1023/A:1024553303144 |
[7] |
El-Hendawy S E, Hassan W M, Al-Suhaibani N A, Refay Y, Abdella K A. Comparative performance of multivariable agro- physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci, 2017, 8: 435.
doi: 10.3389/fpls.2017.00435 pmid: 28424718 |
[8] | Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next. Aust J Plant Physiol, 1995, 22: 875-884. |
[9] |
Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007 |
[10] |
Genc Y, McDonald G K, Tester M. Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ, 2007, 30: 1486-1498.
doi: 10.1111/pce.2007.30.issue-11 |
[11] |
Tao R, Ding J, Li C, Zhu X, Guo W, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.
doi: 10.3389/fpls.2021.646175 |
[12] |
Masarmi A G, Solouki M, Fakheri B, Kalaji H M, Mahgdingad N, Golkari S, Telesiński A, Lamlom S F, Kociel H, Yousef A F. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLoS One, 2023, 18: e0282606.
doi: 10.1371/journal.pone.0282606 |
[13] |
Wang M, Xia G M. The landscape of molecular mechanisms for salt tolerance in wheat. Crop J, 2018, 6: 42-47.
doi: 10.1016/j.cj.2017.09.002 |
[14] |
Tavakkoli E, Fatehi F, Rengasamy P, McDonald G K. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J Exp Bot, 2012, 63: 3853-3867.
doi: 10.1093/jxb/ers085 pmid: 22442423 |
[15] |
Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread wheat with high salinity and solidity tolerance. Front Plant Sci, 2019, 10: 1280.
doi: 10.3389/fpls.2019.01280 |
[16] |
Cuin T A, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ, 2011, 34: 947-961.
doi: 10.1111/pce.2011.34.issue-6 |
[17] | 豆昕桐, 王英杰, 王华忠, 岳洁瑜. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976-4992. |
Dou X T, Wang Y J, Wang H Z, Yue J Y. Physiological response and tolerance difference of two wheat varieties to NaCl stress. Acta Ecol Sin, 2021, 41: 4976-4992 (in Chinese with English abstract). | |
[18] |
Luo Q L, Teng W, Fang S, Li H W, Li B, Chu J F, Li Z S, Zheng Q. Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. Crop J, 2019, 7: 378-392.
doi: 10.1016/j.cj.2018.11.009 |
[19] |
Zhang Y, Liu Z, Khan A A, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X, Ni Z, Xin M. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep, 2016, 6: 21476.
doi: 10.1038/srep21476 |
[20] | Yu L, Wang W W, Niu L Y, Wang W, Lu L, Wang F Z, Wang L P, Wang Y, Zang X J. A new cultivation technique of Cangmai 6005 for high yield in Cangzhou dry-alkali land. Asian Agric Res, 2018, 10: 68-70. |
[21] |
Shan L, Li C, Chen F, Zhao S, Xia G. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ, 2008, 31: 1128-1137.
doi: 10.1111/pce.2008.31.issue-8 |
[22] |
Wang Z Y, Qin X H, Li J H, Fan L F, Zhou Q, Wang Y Q, Zhao X, Xie C J, Wang Z Y, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ Exp Bot, 2019, 160: 120-130.
doi: 10.1016/j.envexpbot.2019.01.014 |
[23] | 梁超, 王超, 杨秀风, 张秀田, 王玮. ‘德抗961’小麦耐盐生理特性研究. 西北植物学报, 2006, 26: 2075-2082. |
Liang C, Wang C, Yang X F, Zhang X T, Wang W. Salt-tolerant physiological characters of wheat variety Dekang 961. Acta Bot Boreal-Occident Sin, 2006, 26: 2075-2082 (in Chinese with English abstract). | |
[24] |
Ma Q, Zhou H J, Sui X Y, Su C X, Yu Y C, Yang H B, Dong C H. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul, 2021, 94: 33-48.
doi: 10.1007/s10725-021-00694-9 |
[25] |
Guo G F, Ge P, Ma C Y, Li X H, Lü D W, Wang S L, Ma W J, Yan Y M. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics, 2012, 75: 1867-1885.
doi: 10.1016/j.jprot.2011.12.032 pmid: 22245046 |
[26] |
Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep, 2017, 7: 2731.
doi: 10.1038/s41598-017-03024-0 pmid: 28578401 |
[27] | 马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价. 作物学报, 2005, 31: 58-64. |
Ma Y Q, Weng Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad. Acta Agron Sin, 2005, 31: 58-64 (in Chinese with English abstract). | |
[28] |
Wang W, Wang W, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. J Integr Plant Biol, 2020, 62: 631-651.
doi: 10.1111/jipb.v62.5 |
[29] | 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73. |
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat-Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73 (in Chinese with English abstract). | |
[30] | Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Ann Biol Res, 2012, 3: 5545-5551. |
[31] |
Soda N, Ephrath J E, Dag A, Beiersdorf I, Presnov E, Yermiyahu U, Ben-Gal A. Root growth dynamics of olive (Olea europaea L.) affected by irrigation induced salinity. Plant Soil, 2017, 411: 305-318.
doi: 10.1007/s11104-016-3032-9 |
[32] |
Tan J L, Ben-Gal A, Shtein I, Bustan A, Dag A, Erel R. Root structural plasticity enhances salt tolerance in mature olives. Environ Exp Bot, 2020, 179: 104224.
doi: 10.1016/j.envexpbot.2020.104224 |
[33] |
Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91: 503-527.
doi: 10.1093/aob/mcg058 |
[34] |
Ashraf M, O’Leary J W. Responses of newly developed salt- tolerant genotype of spring wheat to salt stress: yield components and ion distribution. J Agron Crop Sci, 1996, 176: 91-101.
doi: 10.1111/jac.1996.176.issue-2 |
[35] |
Rashid A, Querishi R H, Hollington P A, Jones R G W. Comparative responses of wheat cultivars to salinity at the seedling stage. J Agron Crop Sci, 1999, 182: 199-207.
doi: 10.1046/j.1439-037x.1999.00295.x |
[36] |
Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res, 2004, 85: 125-133.
doi: 10.1016/S0378-4290(03)00157-6 |
[37] |
Walker D J, Leigh R A, Miller A J. Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA, 1996, 93: 10510-10514.
doi: 10.1073/pnas.93.19.10510 pmid: 11607707 |
[38] | Isabelle C, Cécile L, Martin B, Hervé S. Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2013, 3: 833-848. |
[39] |
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol, 2014, 171: 670-687.
doi: 10.1016/j.jplph.2014.01.009 |
[40] | 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2646-2654. |
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2646-2654 (in Chinese with English abstract). | |
[41] | 周升辉, 吴秋红, 谢菁忠, 陈娇娇, 陈永兴, 傅琳, 王国鑫, 于美华, 王振忠, 张德云, 王令, 王丽丽, 张艳, 梁荣奇, 韩俊, 刘志勇. 小麦燕大1817×北农6号重组自交系群体在正常和盐胁迫水培条件下苗期性状的QTL定位. 作物学报, 2016, 42: 1764-1778. |
Zhou S H, Wu Q H, Xie J Z, Chen J J, Chen Y X, Fu L, Wang G X, Yu M H, Wang Z Z, Zhang D Y, Wang L, Wang L L, Zhang Y, Liang R Q, Han J, Liu Z Y. Mapping QTLs for wheat seedling traits in RILs population of Yanda 1817 × Beinong 6 under normal and salt-stress conditions. Acta Agron Sin, 2016, 42: 1764-1778 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01764 |
|
[42] |
Richards R A, Dennett C W, Qualset C O, Epstein E, Norlyn J D, Winslow M D. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res, 1987, 15: 277-287.
doi: 10.1016/0378-4290(87)90017-7 |
[43] |
Houshmand S, Arzani A, Maibody S A M, Feizi M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Res, 2005, 91: 345-354.
doi: 10.1016/j.fcr.2004.08.004 |
[44] | Weimberg R. Solute adjustment in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant, 1987, 70: 381-388. |
[45] |
Chen Z, Zhou M, Newman I A, Mendham N J, Zhang G, Shabala S. Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Funct Plant Biol, 2007, 34: 150-162.
doi: 10.1071/FP06237 |
[46] |
Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot, 2008, 59: 2697-2706.
doi: 10.1093/jxb/ern128 |
[47] |
Oyiga B C, Sharma R C, Baum M, Ogbonnaya F C, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ, 2018, 41: 919-935.
doi: 10.1111/pce.v41.5 |
[48] |
Davenport R, James R A, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat. Plant Physiol, 2005, 137: 807-818.
doi: 10.1104/pp.104.057307 pmid: 15734907 |
[49] |
Santa-Maria G E, Epstein E. Potassium/sodium selectivity in wheat and amphiploid cross wheat × Lophopyrum elongatum. Plant Sci, 2001, 160: 523-534.
pmid: 11166440 |
[50] |
Meneguzzo S, Navari-Izzo F, Izzo R. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J Plant Physiol, 2000, 156: 711-716.
doi: 10.1016/S0176-1617(00)80236-9 |
[51] |
Gaxiola R A, Rao R, Sherman A, Grisafi P, Alper S L, Fink G R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 96: 1480-1485.
doi: 10.1073/pnas.96.4.1480 pmid: 9990049 |
[52] |
Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J, Yang G, He G. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnol J, 2021, 19: 1588-1601.
doi: 10.1111/pbi.13572 pmid: 33638922 |
[53] |
Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105 |
[54] |
Cuin T A, Tian Y, Betts S A, Chalmandrier R, Shabala S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol, 2009, 36: 1110-1119.
doi: 10.1071/FP09051 |
[55] |
Raven J A. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use energy, nitrogen and water. New Phytol, 1985, 101: 25-77.
doi: 10.1111/j.1469-8137.1985.tb02816.x pmid: 33873830 |
[1] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[2] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
[3] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[4] | 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1419. |
[5] | 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311. |
[6] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[7] | 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003. |
[8] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813. |
[9] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[10] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[11] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[12] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[13] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[14] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[15] | 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413. |
|