作物学报 ›› 2024, Vol. 50 ›› Issue (3): 590-602.doi: 10.3724/SP.J.1006.2024.31034
郝倩琳1(), 杨廷志1, 吕新茹1, 秦慧敏1, 王亚林1, 贾晨飞1, 夏先春2, 马武军1, 徐登安1,*()
HAO Qian-Lin1(), YANG Ting-Zhi1, LYU Xin-Ru1, QIN Hui-Min1, WANG Ya-Lin1, JIA Chen-Fei1, XIA Xian-Chun2, MA Wu-Jun1, XU Deng-An1,*()
摘要:
在干旱条件下, 小麦(Triticum aestivum L.)适当深播可提高出苗率, 胚芽鞘长度决定了小麦播种的最大深度, 因此培育长胚芽鞘小麦品种至关重要。为了挖掘控制小麦胚芽鞘长度相关的数量性状位点(quantitative trait loci, QTL), 本研究以275份豆麦/石4185重组自交系(recombinant inbred lines, RIL)群体和186份自然群体为材料, 根据90K SNP芯片的分型结果, 利用3个环境下小麦胚芽鞘长度表型数据进行QTL鉴定。采用完备区间作图法(inclusive composite interval mapping, ICIM)在RIL群体中鉴定到2个稳定的QTL位点, 分别位于4BS (30.17~40.59 Mb)和6BL (700.08~703.53 Mb)染色体上, 解释表型变异率(PVE)分别为26.29%~28.46%和4.16%~4.36%; 全基因组关联分析(GWAS)采用混合线性模型(Mixed linear model, MLM)方法, 共鉴定到36个稳定的QTL位点, 分别位于1A (3)、1B (3)、1D (2)、2A (1)、3A (2)、3B (2)、4B (11)、5A (1)、5B (3)、6B (4)、7A (2)、7B (2)染色体上, 在3个环境中重复检测到的显著关联位点有7个, 其中3个位点与已报道的位点重叠或邻近, 其他4个位点推测为新位点, 分别位于1A (499.03 Mb)、3A (73.06 Mb)、4B (648.74~648.87 Mb)、7A (36.31 Mb)染色体上, 预测了5个候选基因(TraesCS1A03G0748300、Rht1、TraesCS4B03G0110000、TraesCS4B03G0112200和TraesCS7A03G0146600)。在两个群体中均鉴定到位于4BS (30.17~40.59 Mb)染色体上的主效QTL位点, 该位点的候选基因Rht1已被证实能降低小麦胚芽鞘长度。该研究结果为挖掘控制小麦胚芽鞘长度的基因以及胚芽鞘长度相关性状分子标记辅助选择育种奠定了基础。
[1] |
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 107-114.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-107 |
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric Sci, 2018, 8(1): 107-114 (in Chinese with English abstract). | |
[2] | 霍治军. 胚芽鞘在小麦抗旱性鉴定中的作用研究. 广西农学报, 2016, 31(3): 8-12. |
Huo Z J. Study on the role between the change of coleoptiles and drought-resistance in wheat. J Guangxi Agric, 2016, 31(3): 8-12 (in Chinese with English abstract). | |
[3] |
Rebetzke G J, Ellis M H, Bonnett D G, Richards R A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1173-1183.
doi: 10.1007/s00122-007-0509-1 pmid: 17294164 |
[4] | Singh K, Khanna-Chopra R. Physiology and QTL analysis of coleoptile length, a trait for drought tolerance in wheat. J Plant Biol, 2010, 37: 1-9. |
[5] |
Yu J, Bai G. Mapping quantitative trait loci for long coleoptile in Chinese wheat landrace Wangshuibai. Crop Sci, 2010, 50: 43-50.
doi: 10.2135/cropsci2009.02.0065 |
[6] |
Schillinger W F U A, Donaldson E, Allan R E, Jones S S. Winter wheat seedling emergence from deep sowing depths. Agron J, 1998, 90: 582-586.
doi: 10.2134/agronj1998.00021962009000050002x |
[7] |
Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res, 2007, 100: 10-23.
doi: 10.1016/j.fcr.2006.05.001 |
[8] | 潘前颖, 文学飞, 潘田园, 史引红, 潘田雨, 潘幸来. 小麦胚芽鞘与耐深播抗旱研究进展. 干旱地区农业研究, 2012, 30(3): 51-57. |
Pan Q Y, Wen X F, Pan T Y, Shi Y H, Pan T Y, Pan X L. Wheat coleoptile and emergence vigor and drought-resistance. Agric Res Arid Areas, 2012, 30(3): 51-57 (in Chinese). | |
[9] |
Blackburn A, Sidhu G, Schillinger W F, Skinner D, Gill K. QTL mapping using GBS and SSR genotyping reveals genomic regions controlling wheat coleoptile length and seedling emergence. Euphytica, 2021, 217: 45.
doi: 10.1007/s10681-021-02778-z |
[10] |
Rebetzke G J, Verbyla A P, Verbyla K L, Morell M K, Cavanagh C R. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J, 2014, 12: 219-230.
doi: 10.1111/pbi.12130 pmid: 24151921 |
[11] | Whan B R W. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust J Exp Biol Med Sci, 1976, 16: 411-416. |
[12] |
Rebetzke G J, Richards R A, Sirault X R R, Morrison A D. Genetic analysis of coleoptile length and diameter in wheat. Aust J Agric Res, 2004, 55: 733.
doi: 10.1071/AR04037 |
[13] |
Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigor and final plant height. Theor Appl Genet, 2007, 115: 59-66.
doi: 10.1007/s00122-007-0540-2 pmid: 17429602 |
[14] |
Singh K, Shukla S, Kadam S, Semwal V K, Singh N K, Khanna-Chopra R. Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. J Plant Biochem Biotechnol, 2015, 24: 324-330.
doi: 10.1007/s13562-014-0277-3 |
[15] | Li G, Xu X, Bai G, Carver B F, Hunger R, Bonman J M, Kolmer J, Dong H. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat. Plant Genome, 2016, 9: 1-12. |
[16] |
Ellis M H, Rebetzke G J, Chandler P, Bonnett D, Spielmeyer W, Richards R A. The effect of different height reducing genes on the early growth of wheat. Functional Plant Biol, 2004, 31: 583-589.
doi: 10.1071/FP03207 |
[17] |
Li P J, Chen P, Wu J, Zhang C, Chu D, See G, Brown-Guedira G, Zemetra R, Souza E. Quantitative trait loci analysis for the effect of Rht-Bl dwarfing gene on coleoptile length and seedling root length and number of bread wheat. Crop Sci, 2011, 51: 2561-2568.
doi: 10.2135/cropsci2011.03.0116 |
[18] |
Alam M, Kashif M, Easterly A C, Wang F, Boehm J D, Baenziger P S. Coleoptile length comparison of three winter small grain cereals adapted to the great plains. Cereal Res Commun, 2022, 50: 127-136.
doi: 10.1007/s42976-021-00151-3 |
[19] |
Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631-639.
doi: 10.1093/aob/mci069 |
[20] |
Bai G, Das M K, Carver B F, Xu X, Krenzer E G. Covariation for microsatellite marker alleles associated with Rht8 and coleoptile length in winter wheat. Crop Sci, 2004, 44: 1187-1194.
doi: 10.2135/cropsci2004.1187 |
[21] |
Xiong H, Zhou C, Fu M, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li Y, Zhang J, Wang K, Li X, Liu L. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014 |
[22] |
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2 |
[23] | Borrill P, Mago R, Xu T, Ford B, Williams S J, Derkx A, Bovill W D, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen O, Doležel J, Pozniak C J, Spielmeyer W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Natl Acad Sci USA, 2022, 119: e2085092177. |
[24] |
Abdolshahi R, Foroodi-Safat S, Mokhtarifar K, Ataollahi R, Moud A M, Kazemipour A, Pourseyedi S, Rahmani A. Challenges of breeding for longer coleoptile in bread wheat (Triticum aestivum L.). Genet Resour Crop Evol, 2021, 68: 1517-1527.
doi: 10.1007/s10722-020-01081-5 |
[25] |
袁倩倩, 李卓坤, 田纪春, 韩淑晓. 不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析. 作物学报, 2011, 37: 294-301.
doi: 10.3724/SP.J.1006.2011.00294 |
Yuan Q Q, Li Z K, Tian J C, Han S X. QTL mapping for coleoptile length and radicle length in wheat under different simulated moisture stresses. Acta Agron Sin, 2011, 37: 294-301 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00294 |
|
[26] |
Zhang H, Cui F, Wang H. Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. Euphytica, 2014, 196: 313-330.
doi: 10.1007/s10681-013-1035-7 |
[27] |
Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y. A genome-wide association study of coleoptile length in different Chinese wheat landraces. Front Plant Sci, 2020, 11: 677.
doi: 10.3389/fpls.2020.00677 pmid: 32582239 |
[28] |
Sidhu J S, Singh D, Gill H S, Brar N K, Qiu Y, Halder J, Al Tameemi R, Turnipseed B, Sehgal S K. Genome-wide association study uncovers novel genomic regions associated with coleoptile length in hard winter wheat. Front Genet, 2020, 10: 1345.
doi: 10.3389/fgene.2019.01345 |
[29] |
Wei N, Zhang S, Liu Y, Wang J, Wu B, Zhao J, Qiao L, Zheng X, Wang J, Zheng J. Genome-wide association study of coleoptile length with Shanxi wheat. Front Plant Sci, 2022, 13: 1016551.
doi: 10.3389/fpls.2022.1016551 |
[30] |
Xu D, Hao Q, Yang T, Lyu X, Qin H, Wang Y, Jia C, Liu W, Dai X, Zeng J, Zhang H, He Z, Xia X, Cao S, Ma W. Impact of “Green Revolution” gene Rht-B1b on coleoptile length of wheat. Front Plant Sci, 2023, 14: 1147019.
doi: 10.3389/fpls.2023.1147019 |
[31] | 唐斯. 中国小麦地方品种胚芽鞘生长动态的关联分析. 四川农业大学硕士学位论文, 四川成都, 2019. pp 10-13. |
Tang S. Correlation Analysis of Coleoptile Growth Dynamics of Local Wheat Varieties in China. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019. pp 10-13 (in Chinese with English abstract). | |
[32] |
Yin C, Li H, Li S, Xu L, Zhao Z, Wang J. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theor Appl Genet, 2015, 128: 1969-1986.
doi: 10.1007/s00122-015-2560-7 |
[33] | Holland J B, Nyquist W E, Cervantes Martínez C T. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev, 2002, 22: 9-12. |
[34] |
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array. Front Plant Sci, 2017, 8: 1389.
doi: 10.3389/fpls.2017.01389 pmid: 28848588 |
[35] |
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[36] |
Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811 pmid: 17110476 |
[37] |
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.2014.12.issue-6 |
[38] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[39] |
Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716 |
[40] |
Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J, 2021, 107: 303-314.
doi: 10.1111/tpj.v107.1 |
[41] |
Yang C, Ma B, He S, Xiong Q, Duan K, Yin C, Chen H, Lu X, Chen S, Zhang J. MAOHUZI6/ETHYLENE INSENSITIVE3- LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353 |
[42] |
Ma B, He S, Duan K, Yin C, Chen H, Yang C, Xiong Q, Song Q, Lu X, Chen H, Zhang W, Lu T, Chen S, Zhang J. Identification of rice ethylene-response mutants and characterization of MHZ7/ OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant, 2013, 6: 1830-1848.
doi: 10.1093/mp/sst087 |
[43] |
Ma B, Yin C, He S, Lu X, Zhang W, Lu T, Chen S, Zhang J S. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet, 2014, 10: e1004701.
doi: 10.1371/journal.pgen.1004701 |
[44] |
Christians M J, Robles L M, Zeller S M, Larsen P B. The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis. Plant J, 2008, 55: 467-477.
doi: 10.1111/tpj.2008.55.issue-3 |
[45] |
Zhang Y, Gong S, Li Q, Sang Y, Yang H. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J, 2006, 46: 971-983.
doi: 10.1111/j.1365-313X.2006.02753.x pmid: 16805731 |
[46] | Zeng Y, Schotte S, Trinh H K, Verstraeten I, Li J, Van de Velde E, Vanneste S, Geelen D. Genetic dissection of light-regulated adventitious root induction in Arabidopsis thaliana hypocotyls. IJMS, 2022, 23: 5301. |
[47] | Stawska M, Oracz K. PhyB and HY5 are involved in the blue light-mediated alleviation of dormancy of Arabidopsis seeds possibly via the modulation of expression of genes related to light, GA, and ABA. IJMS, 2019, 20: 5882. |
[48] |
Choi D, Lee Y, Cho H, Kende H. Regulation of expansion gene expression affects growth and development in transgenic rice plants. Plant Cell, 2003, 15: 1386-1398.
doi: 10.1105/tpc.011965 |
[49] |
Zdanio M, Boron A K, Balcerowicz D, Schoenaers S, Markakis M N, Mouille G, Pintelon I, Suslov D, Gonneau M, Höfte H, Vissenberg K. The proline-rich family protein EXTENSIN33 is required for etiolated Arabidopsis thaliana hypocotyl growth. Plant Cell Physiol, 2020, 61: 1191-1203.
doi: 10.1093/pcp/pcaa049 |
[50] |
Jiang H, Peng K, Hsu T, Chiou Y, Hsieh H. Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLoS Genet, 2023, 19: e1010779.
doi: 10.1371/journal.pgen.1010779 |
[51] |
Perrella G, Davidson M L H, O Donnell L, Nastase A, Herzyk P, Breton G, Pruneda-Paz J L, Kay S A, Chory J, Kaiserli E. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci USA, 2018, 115: 4503-4511.
doi: 10.1073/pnas.1718099115 pmid: 29686058 |
[52] |
Murphy K, Balow K, Lyon S R, Jones S S. Response to selection, combining ability and heritability of coleoptile length in winter wheat. Euphytica, 2008, 164: 709-718.
doi: 10.1007/s10681-008-9692-7 |
[53] |
Zhang N, Pan R Q, Liu J J, Zhang X L, Su Q N, Cui F, Zhao C H, Song L Q, Ji J, Li J M. QTL for sensitivity of seedling height to exogenous GA3 and their effects on adult plant height in common wheat. Cereal Res Commun, 2018, 46: 412-423.
doi: 10.1556/0806.46.2018.021 |
[54] |
Francki M G, Stainer G S, Walker E, Rebetzke G J, Stefanova K T, French R J. Phenotypic evaluation and genetic analysis of seedling emergence in a global collection of wheat genotypes (Triticum aestivum L.) under limited water availability. Front Plant Sci, 2021, 12: 796176.
doi: 10.3389/fpls.2021.796176 |
[55] |
Nagel M, Navakode S, Scheibal V, Baum M, Nachit M, Röder M S, Börner A. The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol Plant, 2014, 58: 681-688.
doi: 10.1007/s10535-014-0436-3 |
[56] |
Rebetzke G J, Appels R, Morrison A D, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res, 2001, 52: 1221.
doi: 10.1071/AR01042 |
[57] |
Lin Q, Gong J, Zhang Z, Meng Z, Wang J, Wang S, Sun J, Gu X, Jin Y, Wu T, Yan N, Wang Y, Kai L, Jiang J, Qi S. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI regulates primary root growth and lateral root elongation. Front Plant Sci, 2023, 13: 1088278.
doi: 10.3389/fpls.2022.1088278 |
[1] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[2] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[3] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[4] | 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003. |
[5] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-913. |
[6] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[7] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[8] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[9] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[10] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[11] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[12] | 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413. |
[13] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[14] | 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477. |
[15] | 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513. |
|