欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 340-353.doi: 10.3724/SP.J.1006.2024.31020

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同磷胁迫处理转OsPHR2小麦的转录组学分析

李艳(), 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢*()   

  1. 河南省作物分子育种研究院 / 河南省麦类种质资源创新与改良重点实验室 / 神农种业实验室, 河南郑州 450002
  • 收稿日期:2023-03-20 接受日期:2023-06-29 出版日期:2024-02-12 网络出版日期:2023-07-17
  • 通讯作者: *许为钢, E-mail: xuwg1958@163.com
  • 作者简介:E-mail: liyanly7812@163.com
  • 基金资助:
    国家自然科学基金项目(31701510);神农种业实验室“一流课题”项目(SN01-2022-01)

Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress

LI Yan(), FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang*()   

  1. Henan Academy of Crops Molecular Breeding / Key Laboratory for Innovation and Improvement of Triticeae Germplasm Resources of Henan Province / Shennong Laboratory, Zhengzhou 450002, Henan, China
  • Received:2023-03-20 Accepted:2023-06-29 Published:2024-02-12 Published online:2023-07-17
  • Contact: *E-mail: xuwg1958@163.com
  • Supported by:
    National Natural Science Foundation of China(31701510);‘First-class Project’ of Shennong Laboratory(SN01-2022-01)

摘要:

PHR基因是磷信号调控体系的核心转录因子, 负责启动下游部分应对磷饥饿的适应性反应。本课题前期获得了磷高效转OsPHR2小麦纯系, 但OsPHR2提高小麦磷吸收利用效率的分子机制尚不清楚。为揭示该机制, 本研究以前期获得的磷高效转OsPHR2小麦纯系为研究材料, 采用水培试验, 小麦长至四叶一心时进行低磷胁迫处理, 分别在低磷胁迫0、6、24和72 h, 利用RNA-Seq进行转录组测定, 分析转基因小麦与对照之间根部和叶片的差异表达基因(differentially expression gene, DEG), 并分别对根部和叶片DEG进行GO和KEGG功能富集分析。结果显示: 低磷胁迫处理0、6、24和72 h转基因系与对照根部有22个共同的DEG, 叶片有9个共同的DEG。转基因小麦与对照根部DEG数量在低磷胁迫处理0 h最多, 其次为6 h。GO和KEGG富集分析显示, 低磷胁迫0 h和6 h, 根部DEG主要富集在糖代谢、苯丙素生物合成等生物学过程, 以及养分贮存器活性、ATP酶活性等分子功能。转基因小麦与对照叶片DEG数量在低磷胁迫72 h最多, 主要富集在糖代谢、有机酸生物合成等生物学过程, 以及与糖基转移酶活性、纤维素合酶活性等有关的分子功能。与对照相比, 转基因系OsT5-28根部血红素过氧化物酶、谷胱甘肽S-转移酶等防御系统关键酶基因, 以及叶片磷酸丙糖转运体家族基因在低磷胁迫前后均上调表达。转OsPHR2小麦与对照对低磷胁迫的响应程度具有一定的差异性, 低磷胁迫下转基因小麦较对照具有较强的磷素吸收利用能力, 主要是OsPHR2调控了小麦中相关基因表达。

关键词: 低磷胁迫, 转基因小麦, 转录组, 磷素吸收利用效率, 差异表达基因

Abstract:

The PHR gene is the core transcription factor in the phosphorus signaling regulatory system, responsible for initiating the adaptive response of downstream parts to phosphorus starvation. At the early stage, the transgenic OsPHR2 wheat pure lines with high phosphorus efficiency were obtained, but the molecular mechanism of OsPHR2 improving the phosphorus absorption and utilization efficiency of wheat is still unclear. In order to reveal the molecular mechanism of OsPHR2 improving the phosphorus uptake and utilization efficiency in wheat, transgenic OsPHR2 wheat pure line with high phosphorus efficiency earlier as the experimental material in this study. Transgenic OsPHR2 wheat and the control were treated with low phosphorus stress when they grew to 4 leaves and 1 heart in hydroponics experiment. Transgenic OsPHR2 wheat and control under low phosphorus stress for 0, 6, 24, and 72 h were used for transcriptomes analysis by RNA-seq. The differentially expression genes (DEGs) in roots and leaves of transgenic wheat and control were analyzed. There were 22 common DEGs in the roots of transgenic wheat and control under low phosphorus stress for 0, 6, 24, and 72 h, and there were nine common DEGs in the leaves under four treatments. The functional and pathway enrichments of differentially expressed genes in roots and leaves were also performed by GO and KEGG analysis. The result showed that the number of DEGs in the root of transgenic wheat and control was the highest under low phosphorus stress for 0 h, followed by 6 h. GO and KEGG enrichment analysis suggested that DEGs were mainly clustered into biological processes such as glucose metabolism, phenylpropanoid biosynthesis, and molecular functions such as nutrient storage activity, ATPase activity, etc. The number of DEGs in the leaves of transgenic wheat and the control was the highest under low phosphorus stress for 72 h. DEGs were mainly clustered into biological processes such as glucose metabolism, organic acid biosynthesis, as well as molecular functions related to glycosyltransferase activity and cellulose synthase activity. Compared with the control, the key enzyme genes of the defense system such as heme peroxidase and glutathione S-transferase in the root of the transgenic line OsT5-28, as well as the trisphosphate transporter family genes in the leaf were up-regulated before and after low phosphorus stresses. The response of transgenic OsPHR2 wheat to low phosphorus stress was different from that of the control. Transgenic wheat had stronger phosphorus absorption and utilization ability than the control under low phosphorus stress, mainly because OsPHR2 regulated the relative expression level of related genes in wheat.

Key words: low phosphorus stress, transgenic wheat, transcriptomics, phosphorus absorption and utilization efficiency, differentially expressed genes

图1

不同磷处理小麦RNA-Seq数据的主成分分析"

表1

qRT-PCR引物信息"

基因名称
Gene ID
上游引物序列
Forward sequence (5′-3′)
下游引物序列
Reverse sequence (5′-3′)
TraesCS7A02G173000 (叶Leaf) CAACAAGTTCTTGCCGACCA CTATCCCTTGCATGCACGTC
TraesCS6A02G058200 (叶Leaf) TGTTTCTCTGTCAGGGCCAA TTGTTTCTTGCTCGTCGGTG
TraesCS6A02G059600 (叶Leaf) GGAGTACCCCAACCTGTTCA CCTTTCTCTGTCATGTGGCG
TraesCS6A02G052400 (叶Leaf) GTCCGGTTTAGTTGGGGAGA TTCACCACCATGTACTCCCC
TraesCS6B02G465800 (叶Leaf) CACGGTGCCTAGAGTTGTTG TTCAACGTTTCCAGTGCCTG
TraesCS6A02G059000 (根Root) GACAACATCCAGGGCATCAC GGATGACGTTCTCCAGGAAG
TraesCS6A02G055200 (根Root) CAACATCCAGGGCATCAC GGATGACGTTCTCCAGGAAG
TraesCS6A02G035000 (根Root) AGAAGGGCGTGGAGACCTAC GTGATGGTGGGCTTCTTGTT
novel.11254 (根Root) CAGCAGTTCAAGATCCACGA CCAATCCAATACCTCCCTGA
TraesCS6A02G035200 (根Root) TGCCAAGGACAACAAGAAGA GGAGTTGATGTTGGGGATCA
Actin ATGTTGTTCTCAGTGGAGGTTC CTGTATTTCCTTTCAGGTGGTGC

图2

转基因小麦与对照不同比较组合根部差异表达基因分析 A: 转基因小麦与对照DEG数量; B: 转基因小麦与对照DEG韦恩图。"

图3

受体对照低磷胁迫6 h与0 h的根部差异表达基因分析"

图4

转基因小麦与对照不同比较组合叶片差异表达基因分析 A: 转基因小麦与对照DEG数量; B: 转基因小麦与对照DEG韦恩图。"

图5

受体对照低磷胁迫72 h与0 h的叶片差异表达基因分析"

图6

不同磷处理根部和叶片部分DEG表达模式验证 1: TraesCS7A02G173000 (叶); 2: TraesCS6A02G058200 (叶); 3: TraesCS6A02G059600 (叶); 4: TraesCS6A02G052400 (叶); 5: TraesCS6B02G465800 (叶); 6: TraesCS6A02G059000 (根); 7: TraesCS6A02G055200 (根); 8: TraesCS6A02G035000 (根); 9: novel.11254 (根); 10: TraesCS6A02G035200 (根)。"

图7

转基因小麦与对照不同比较组合根部差异基因的GO富集分析"

图8

受体对照低磷胁迫6 h与0 h根部差异基因的GO富集分析"

表2

不同比较组合根部差异基因的KEGG富集分析"

基因ID
Gene
名称
Description
R_0h_T vs
R_0h_C up
R_0h_T vs
R_0h_C Down
R_6h_T vs R_6h_C up R_6h_T vs
R_6h_C Down
dosa00592 α-亚麻酸代谢Alpha-Linolenic acid metabolism 1 6 0 0
dosa00480 谷胱甘肽代谢Glutathione metabolism 0 0 8 2
dosa00564 甘油磷脂代谢Glycerophospholipid metabolism 2 11 0 0
dosa00940 苯丙类生物合成Phenylpropanoid biosynthesis 12 22 9 1
dosa04075 植物激素信号转导Plant hormone signal transduction 3 21 0 0

图9

受体对照低磷胁迫处理6 h与0 h根部差异基因的KEGG富集分析"

图10

转基因小麦与对照不同比较组合叶片差异基因的GO富集分析"

图11

受体对照低磷胁迫72 h与0 h叶片差异基因的GO富集分析"

表3

不同比较组叶片差异基因的KEGG富集分析"

基因ID
Gene ID
名称
Description
L_0 h_T vs
L_0 h_C up
L_0 h_T vs
L_0 h_C Down
L_72 h_T vs L_72 h_C up L_72 h_T vs
L_72 h_C Down
dosa00062 脂肪酸伸长率Fatty acid elongation 0 0 5 0
dosa00941 类黄酮生物合成Flavonoid biosynthesis 0 0 5 0
dosa00360 苯丙氨酸代谢Phenylalanine metabolism 0 0 5 0
dosa00940 苯丙类生物合成Phenylpropanoid biosynthesis 0 0 11 0
dosa00196 光合作用-天线蛋白Photosynthesis-antenna proteins 0 2 0 0

图12

受体对照低磷胁迫处理72 h与0 h叶片差异基因的KEGG富集分析"

[1] Bieleski R L, Ferguson J B. Physiology and metabolism of phosphate and its compounds. In: Lauchli A, Bieleski R L, eds. Inorganic Plant Nutrition. Berlin: Springer, 1983. pp 422-449.
[2] Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol, 1993, 101: 339-344.
pmid: 12231689
[3] Hawkeford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller I S, White P. Functions of macronutrients. In: Marschner P, ed. Marschner’s Mineral Nutrition of Higher plants. London, England: Academic Press, 2012. pp 135-189.
[4] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.
doi: 10.1093/aob/mcs285
[5] Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and biochemical responses of Cucumis melo L. chloroplasts to low phosphate stress. Front Plant Sci, 2018, 9: 1525.
doi: 10.3389/fpls.2018.01525
[6] Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824-836.
doi: 10.1016/j.plantsci.2009.03.006
[7] Goldstein A H. Phosphate Starvation Inducible Enzymes and Proteins in Higher Plants. Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins, Cambridge: Cambridge University Press, 1992. pp 25-44.
[8] Withers P J A, Sylvester-Bradley R, Jones D L, Healey J R, Talboys P J. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environment Sci Technol, 2014, 48: 6523-6530.
doi: 10.1021/es501670j
[9] Yuan Z W, Jiang S Y, Sheng H, Liu X, Hua H, Liu X W, Zhang Y. Human perturbation of the global phosphorus cycle: changes and consequences. Environ Sci Technol, 2018, 52: 2438-2450.
doi: 10.1021/acs.est.7b03910
[10] Hou X L, Wu P, Jiao F C, Jia Q J, Chen H M, Yu J, Song X W, Yi K K. Regulation of the expression of OsIPSl and OsIPS2 in rice via systemic and local Pi signaling and hormones. Plant Cell Environ, 2005, 28: 353-364.
doi: 10.1111/pce.2005.28.issue-3
[11] Abel S, Nurnberger T, Ahnert V, Krauss G J, Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol, 2000, 122: 543-552.
doi: 10.1104/pp.122.2.543 pmid: 10677447
[12] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 427-447.
[13] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23-37.
doi: 10.1007/s00425-002-0921-3 pmid: 12430011
[14] Lynch J P, Brown K M. Topsoil forging-an architectural adaption of plants to low phosphorus availability. Plant Soil, 2001, 237: 225-237.
doi: 10.1023/A:1013324727040
[15] Lynch J P. Root phones for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011, 156: 1041-1049.
doi: 10.1104/pp.111.175414
[16] 韩胜芳, 邓若磊, 徐海荣, 曹云飞, 肖凯. 缺磷条件下不同水稻品种磷素吸收特性的研究. 植物遗传资源学报, 2007, 8: 223-227.
Han S F, Deng R L, Xu H R, Cao Y F, Xiao K. Characteristics of phosphorus uptake in different rice (Oryza sativa) cultivars under phosphorus stress condition. J Plant Genet Resour, 2007, 8: 223-227 (in Chinese with English abstract).
[17] 袁硕, 彭正萍, 沙晓晴, 王艳群. 玉米杂交种对缺磷反应的生理机制及基因型差异. 中国农业科学, 2010, 43: 51-58.
Yuan S, Peng Z P, Sha X Q, Wang Y Q. Physiological mechanism of maize hybrids in response to P deficiency and differences among cultivars. Sci Agric Sin, 2010, 43: 51-58 (in Chinese with English abstract).
[18] 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松. 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011, 17: 525-531.
Yang X B, Zhang X Z, Li T X, Song X, Hu H S. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Plant Nutr Fert Sci, 2011, 17: 525-531 (in Chinese with English abstract).
[19] Schachtman D P and Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007, 58: 47-69.
pmid: 17067284
[20] Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939.
doi: 10.1073/pnas.0505266102 pmid: 16085708
[21] Staudinger C, Dissanayake B M, Duncan O, Millar A H. The wheat secreted root proteome: implications for phosphorus mobilization and biotic interactions. J Proteom, 2022, 252: 104450.
doi: 10.1016/j.jprot.2021.104450
[22] 舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2021.
Shu Y. Studies on the Mechanism of the Effects of Low Phosphorus on Leaf Growth and Photosynthesis in Wheat. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[23] Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102
[24] Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P. OsPHR2 Is Involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782
[25] Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259: 1271.
doi: 10.1007/s00709-021-01702-5
[26] 于倩倩. 拟南芥核苷三磷酸水解酶APP1通过影响ROS的稳态参与根尖干细胞微环境的维持. 山东大学博士学位论文, 山东济南, 2016.
Yu Q Q. A P-loop NTPase APP1 Maintains Root Stem Cell Niche Identity through the Regulation of ROS Homeostasis in Arabidopsis. PhD Dissertation of Shandong University, Jinan, Shandong, China, 2016 (in Chinese with English abstract).
[27] 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10.
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract).
[28] Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005, 46: 1350-1357.
doi: 10.1093/pcp/pci145
[29] 徐艳花. 低氮和正常供氮条件下调控小麦苗期种子根长QTL定位和蛋白质组学分析. 河南农业大学博士学位论文, 河南郑州, 2019.
Xu Y H. QTL mapping and Proteomics Analysis for Seminal Root Length of Wheat Seedling under Control and Low Nitrogen Conditions. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[30] 王庆梅, 杨树德, 陈珈. 叶绿体内被膜上的磷酸丙糖转运器. 植物学通报, 2001, 18(1): 11-15.
Wang Q M, Yang S D, Chen J. Triose phosphate translocator in the inner membrane of chloroplast. Chin Bull Bot, 2001, 18(1): 11-15 (in Chinese with English abstract).
[31] Heldt H W, Flügge U I. Metabolite transport in plant cells. In: Tobin A K, ed. Plant Organelles: Compartmentation of Metabolism in Photosynthetic Tissue. Cambridge: Cambridge University Press, 1992. pp 21-47.
[32] 周洁. 水稻低磷胁迫相关转录因子OsPHR1OsPHR2的功能研究. 浙江大学博士学位论文, 浙江杭州, 2007.
Zhou J. Function Analysis of Rice Transcription Factors OsPHR1 and OsPHR2 Involved in Signaling of Phosphorus Starvation. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007 (in Chinese with English abstract).
[33] Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424
[34] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk 1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203
[35] Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18: 308-320.
pmid: 16377756
[36] Li J S, Suzui N, Nakai Y, Yin Y G, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Satoi K, Ohkama O N, Nakamura S. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus). Plant Sci, 2021, 305: 110822.
doi: 10.1016/j.plantsci.2021.110822
[37] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14055
[38] Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA, 2009, 106: 4284-4289.
doi: 10.1073/pnas.0900060106 pmid: 19246387
[39] 孔令剑. 蔗糖处理下大豆苗期根系对低磷胁迫的响应. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018.
Kong L J. Responses of Soybean Seedlings Root System to Low Phosphorus Stress under Sucrose Treatment. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract).
[40] Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538.
doi: 10.1111/pce.1996.19.issue-5
[41] Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94: 323-332.
doi: 10.1093/aob/mch156
[42] Svistoonoff S, Creff A, Reymond M, Siqoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T. Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet, 2007, 39: 792-796.
doi: 10.1038/ng2041 pmid: 17496893
[43] Fang Z Y, Shao C, Meng Y J, Wu P, Chen M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009, 176: 170-180.
doi: 10.1016/j.plantsci.2008.09.007
[44] Quentin A G, Pinkard E A, Ryan M G, Tissue D T, Baggett L S, Adams H D, Maillard P, Marchand J, Landhäusser S M, Lacointe A, Gibon Y, Anderegg W R L, Asao S, Atkin O K, Bonhomme M, Claye C, Chow P S, Clément-Vidal A, Davies N W, Dickman L T, Dumbur R, Ellsworth D S, Falk K, Galiano L, Grünzweig J M, Hartmann H, Hoch G, Hood S, Jones J E, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield S D, Martínez-Vilalta J, Maucourt M, McDowell N G, Moing A, Muller B, Nebauer S G, Niinemets Ü, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Joanis B S, Sala A, Smith R A, Sterck F, Stinziano J R, Tobias M, Unda F, Watanabe M, Way D A, Weerasinghe L K, Wild B, Wiley E, Woodruff D R. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol, 2015, 35: 1146-1165.
doi: 10.1093/treephys/tpv073 pmid: 26423132
[45] Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93-109.
doi: 10.1093/jxb/erm221 pmid: 18212031
[1] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[2] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[3] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[4] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[5] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[6] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[7] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[8] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[9] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[10] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[11] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[12] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[13] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[14] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[15] 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .