作物学报 ›› 2024, Vol. 50 ›› Issue (2): 340-353.doi: 10.3724/SP.J.1006.2024.31020
李艳(), 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢*()
LI Yan(), FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang*()
摘要:
PHR基因是磷信号调控体系的核心转录因子, 负责启动下游部分应对磷饥饿的适应性反应。本课题前期获得了磷高效转OsPHR2小麦纯系, 但OsPHR2提高小麦磷吸收利用效率的分子机制尚不清楚。为揭示该机制, 本研究以前期获得的磷高效转OsPHR2小麦纯系为研究材料, 采用水培试验, 小麦长至四叶一心时进行低磷胁迫处理, 分别在低磷胁迫0、6、24和72 h, 利用RNA-Seq进行转录组测定, 分析转基因小麦与对照之间根部和叶片的差异表达基因(differentially expression gene, DEG), 并分别对根部和叶片DEG进行GO和KEGG功能富集分析。结果显示: 低磷胁迫处理0、6、24和72 h转基因系与对照根部有22个共同的DEG, 叶片有9个共同的DEG。转基因小麦与对照根部DEG数量在低磷胁迫处理0 h最多, 其次为6 h。GO和KEGG富集分析显示, 低磷胁迫0 h和6 h, 根部DEG主要富集在糖代谢、苯丙素生物合成等生物学过程, 以及养分贮存器活性、ATP酶活性等分子功能。转基因小麦与对照叶片DEG数量在低磷胁迫72 h最多, 主要富集在糖代谢、有机酸生物合成等生物学过程, 以及与糖基转移酶活性、纤维素合酶活性等有关的分子功能。与对照相比, 转基因系OsT5-28根部血红素过氧化物酶、谷胱甘肽S-转移酶等防御系统关键酶基因, 以及叶片磷酸丙糖转运体家族基因在低磷胁迫前后均上调表达。转OsPHR2小麦与对照对低磷胁迫的响应程度具有一定的差异性, 低磷胁迫下转基因小麦较对照具有较强的磷素吸收利用能力, 主要是OsPHR2调控了小麦中相关基因表达。
[1] | Bieleski R L, Ferguson J B. Physiology and metabolism of phosphate and its compounds. In: Lauchli A, Bieleski R L, eds. Inorganic Plant Nutrition. Berlin: Springer, 1983. pp 422-449. |
[2] |
Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol, 1993, 101: 339-344.
pmid: 12231689 |
[3] | Hawkeford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller I S, White P. Functions of macronutrients. In: Marschner P, ed. Marschner’s Mineral Nutrition of Higher plants. London, England: Academic Press, 2012. pp 135-189. |
[4] |
Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.
doi: 10.1093/aob/mcs285 |
[5] |
Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and biochemical responses of Cucumis melo L. chloroplasts to low phosphate stress. Front Plant Sci, 2018, 9: 1525.
doi: 10.3389/fpls.2018.01525 |
[6] |
Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824-836.
doi: 10.1016/j.plantsci.2009.03.006 |
[7] | Goldstein A H. Phosphate Starvation Inducible Enzymes and Proteins in Higher Plants. Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins, Cambridge: Cambridge University Press, 1992. pp 25-44. |
[8] |
Withers P J A, Sylvester-Bradley R, Jones D L, Healey J R, Talboys P J. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environment Sci Technol, 2014, 48: 6523-6530.
doi: 10.1021/es501670j |
[9] |
Yuan Z W, Jiang S Y, Sheng H, Liu X, Hua H, Liu X W, Zhang Y. Human perturbation of the global phosphorus cycle: changes and consequences. Environ Sci Technol, 2018, 52: 2438-2450.
doi: 10.1021/acs.est.7b03910 |
[10] |
Hou X L, Wu P, Jiao F C, Jia Q J, Chen H M, Yu J, Song X W, Yi K K. Regulation of the expression of OsIPSl and OsIPS2 in rice via systemic and local Pi signaling and hormones. Plant Cell Environ, 2005, 28: 353-364.
doi: 10.1111/pce.2005.28.issue-3 |
[11] |
Abel S, Nurnberger T, Ahnert V, Krauss G J, Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol, 2000, 122: 543-552.
doi: 10.1104/pp.122.2.543 pmid: 10677447 |
[12] | Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 427-447. |
[13] |
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23-37.
doi: 10.1007/s00425-002-0921-3 pmid: 12430011 |
[14] |
Lynch J P, Brown K M. Topsoil forging-an architectural adaption of plants to low phosphorus availability. Plant Soil, 2001, 237: 225-237.
doi: 10.1023/A:1013324727040 |
[15] |
Lynch J P. Root phones for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011, 156: 1041-1049.
doi: 10.1104/pp.111.175414 |
[16] | 韩胜芳, 邓若磊, 徐海荣, 曹云飞, 肖凯. 缺磷条件下不同水稻品种磷素吸收特性的研究. 植物遗传资源学报, 2007, 8: 223-227. |
Han S F, Deng R L, Xu H R, Cao Y F, Xiao K. Characteristics of phosphorus uptake in different rice (Oryza sativa) cultivars under phosphorus stress condition. J Plant Genet Resour, 2007, 8: 223-227 (in Chinese with English abstract). | |
[17] | 袁硕, 彭正萍, 沙晓晴, 王艳群. 玉米杂交种对缺磷反应的生理机制及基因型差异. 中国农业科学, 2010, 43: 51-58. |
Yuan S, Peng Z P, Sha X Q, Wang Y Q. Physiological mechanism of maize hybrids in response to P deficiency and differences among cultivars. Sci Agric Sin, 2010, 43: 51-58 (in Chinese with English abstract). | |
[18] | 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松. 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011, 17: 525-531. |
Yang X B, Zhang X Z, Li T X, Song X, Hu H S. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Plant Nutr Fert Sci, 2011, 17: 525-531 (in Chinese with English abstract). | |
[19] |
Schachtman D P and Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007, 58: 47-69.
pmid: 17067284 |
[20] |
Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939.
doi: 10.1073/pnas.0505266102 pmid: 16085708 |
[21] |
Staudinger C, Dissanayake B M, Duncan O, Millar A H. The wheat secreted root proteome: implications for phosphorus mobilization and biotic interactions. J Proteom, 2022, 252: 104450.
doi: 10.1016/j.jprot.2021.104450 |
[22] | 舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2021. |
Shu Y. Studies on the Mechanism of the Effects of Low Phosphorus on Leaf Growth and Photosynthesis in Wheat. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract). | |
[23] |
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102 |
[24] |
Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P. OsPHR2 Is Involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782 |
[25] |
Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259: 1271.
doi: 10.1007/s00709-021-01702-5 |
[26] | 于倩倩. 拟南芥核苷三磷酸水解酶APP1通过影响ROS的稳态参与根尖干细胞微环境的维持. 山东大学博士学位论文, 山东济南, 2016. |
Yu Q Q. A P-loop NTPase APP1 Maintains Root Stem Cell Niche Identity through the Regulation of ROS Homeostasis in Arabidopsis. PhD Dissertation of Shandong University, Jinan, Shandong, China, 2016 (in Chinese with English abstract). | |
[27] | 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10. |
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract). | |
[28] |
Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005, 46: 1350-1357.
doi: 10.1093/pcp/pci145 |
[29] | 徐艳花. 低氮和正常供氮条件下调控小麦苗期种子根长QTL定位和蛋白质组学分析. 河南农业大学博士学位论文, 河南郑州, 2019. |
Xu Y H. QTL mapping and Proteomics Analysis for Seminal Root Length of Wheat Seedling under Control and Low Nitrogen Conditions. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract). | |
[30] | 王庆梅, 杨树德, 陈珈. 叶绿体内被膜上的磷酸丙糖转运器. 植物学通报, 2001, 18(1): 11-15. |
Wang Q M, Yang S D, Chen J. Triose phosphate translocator in the inner membrane of chloroplast. Chin Bull Bot, 2001, 18(1): 11-15 (in Chinese with English abstract). | |
[31] | Heldt H W, Flügge U I. Metabolite transport in plant cells. In: Tobin A K, ed. Plant Organelles: Compartmentation of Metabolism in Photosynthetic Tissue. Cambridge: Cambridge University Press, 1992. pp 21-47. |
[32] | 周洁. 水稻低磷胁迫相关转录因子OsPHR1和OsPHR2的功能研究. 浙江大学博士学位论文, 浙江杭州, 2007. |
Zhou J. Function Analysis of Rice Transcription Factors OsPHR1 and OsPHR2 Involved in Signaling of Phosphorus Starvation. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007 (in Chinese with English abstract). | |
[33] |
Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424 |
[34] |
Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk 1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203 |
[35] |
Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18: 308-320.
pmid: 16377756 |
[36] |
Li J S, Suzui N, Nakai Y, Yin Y G, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Satoi K, Ohkama O N, Nakamura S. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus). Plant Sci, 2021, 305: 110822.
doi: 10.1016/j.plantsci.2021.110822 |
[37] |
李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055 |
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14055 |
|
[38] |
Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA, 2009, 106: 4284-4289.
doi: 10.1073/pnas.0900060106 pmid: 19246387 |
[39] | 孔令剑. 蔗糖处理下大豆苗期根系对低磷胁迫的响应. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018. |
Kong L J. Responses of Soybean Seedlings Root System to Low Phosphorus Stress under Sucrose Treatment. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract). | |
[40] |
Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538.
doi: 10.1111/pce.1996.19.issue-5 |
[41] |
Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94: 323-332.
doi: 10.1093/aob/mch156 |
[42] |
Svistoonoff S, Creff A, Reymond M, Siqoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T. Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet, 2007, 39: 792-796.
doi: 10.1038/ng2041 pmid: 17496893 |
[43] |
Fang Z Y, Shao C, Meng Y J, Wu P, Chen M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009, 176: 170-180.
doi: 10.1016/j.plantsci.2008.09.007 |
[44] |
Quentin A G, Pinkard E A, Ryan M G, Tissue D T, Baggett L S, Adams H D, Maillard P, Marchand J, Landhäusser S M, Lacointe A, Gibon Y, Anderegg W R L, Asao S, Atkin O K, Bonhomme M, Claye C, Chow P S, Clément-Vidal A, Davies N W, Dickman L T, Dumbur R, Ellsworth D S, Falk K, Galiano L, Grünzweig J M, Hartmann H, Hoch G, Hood S, Jones J E, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield S D, Martínez-Vilalta J, Maucourt M, McDowell N G, Moing A, Muller B, Nebauer S G, Niinemets Ü, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Joanis B S, Sala A, Smith R A, Sterck F, Stinziano J R, Tobias M, Unda F, Watanabe M, Way D A, Weerasinghe L K, Wild B, Wiley E, Woodruff D R. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol, 2015, 35: 1146-1165.
doi: 10.1093/treephys/tpv073 pmid: 26423132 |
[45] |
Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93-109.
doi: 10.1093/jxb/erm221 pmid: 18212031 |
[1] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[2] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[3] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[4] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[5] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[6] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[7] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[8] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[9] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[10] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[11] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[12] | 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444. |
[13] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[14] | 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249. |
[15] | 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260. |
|