作物学报 ›› 2024, Vol. 50 ›› Issue (1): 100-109.doi: 10.3724/SP.J.1006.2024.34056
石宇欣1,2(), 刘欣玥1,2, 孙建强1,2, 李晓菲1,2, 郭潇阳2, 周雅2, 邱丽娟1,2,*()
SHI Yu-Xin1,2(), LIU Xin-Yue1,2, SUN Jian-Qiang1,2, LI Xiao-Fei1,2, GUO Xiao-Yang2, ZHOU Ya2, QIU Li-Juan1,2,*()
摘要:
耐盐基因功能鉴定对于大豆品种改良以及盐碱地的开发利用至关重要。盐害胁迫下作物通过合成和积累甜菜碱作为渗透保护剂, 减小盐害对作物产量的影响。BADH基因已在多种植物中被证实调节植物对逆境胁迫的响应, 但在大豆中的调控机制尚不清晰。本研究克隆了GmBADH1基因, qRT-PCR显示该基因在根、茎、叶中均有表达, 尤其在根中的表达丰度最高。通过农杆菌介导的大豆遗传转化技术将CRISPR/Cas9系统构建的表达载体转入到大豆品种JACK中, 产生了3种可以调控大豆耐盐性状的靶向突变, 均发生在编码区, 分别为缺失19 bp、插入1 bp、插入9 bp替换2 bp。前两者, 过早出现的终止密码子, 使其均产生截断的BADH1蛋白, 后者发生移码突变。在出苗期和苗期分别对突变纯合植株进行盐处理, 结果表明, 出苗期耐盐性与野生型相比显著下降, 苗期与野生型相比无明显差异。这说明GmBADH1基因可能主要调控出苗期的耐盐性状。本研究为深入挖掘大豆耐盐基因和培育大豆耐盐品种提供了依据。
[1] |
Conde A, Chaves M M, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol, 2011, 52: 1583-1602.
doi: 10.1093/pcp/pcr107 pmid: 21828102 |
[2] | Hashemi F S G, Ismail M R, Rafii M Y, Aslani F, Miah G, Muharam F M. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. Biotechnol Equip, 2018, 32: 815-829. |
[3] | Bao Y, Zhao R, Li F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379-388. |
[4] |
Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155-162.
doi: 10.1007/BF00192524 pmid: 7764986 |
[5] |
Meng Y L, Wang Y M, Zhang B, Nii N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res, 2001, 11: 187-193.
pmid: 11642403 |
[6] |
Niazian M, Sadat-Noori S A, Tohidfar M, Galuszka P, Mortazavian S M M. Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crop Prod, 2019, 132: 29-40.
doi: 10.1016/j.indcrop.2019.02.005 |
[7] |
Wai A H, Naing A H, Lee D J, Kim C K, Chung M Y. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnol Rep, 2020, 14: 515-537.
doi: 10.1007/s11816-020-00638-1 |
[8] |
Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA, 1990, 87: 2745-2749.
pmid: 2320587 |
[9] |
Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant, 2008, 134: 22-30.
doi: 10.1111/j.1399-3054.2008.01122.x pmid: 18429940 |
[10] | 唐露, 杨振, 乔飞, 李新国. 香蕉BADH基因序列及表达特性分析. 分子植物育种, 2019, 17: 719-728. |
Tang L, Yang Z, Qiao F, Li X G. Sequence analysis and expression characteristics of BADH gene in banana. Mol Plant Breed, 2019, 17: 719-728. (in Chinese with English abstract) | |
[11] | 曹红利, 郝心愿, 岳川, 马春雷, 王新超, 杨亚军. 茶树甜菜碱醛脱氢酶基因(CsBADH1)的全长cDNA克隆与表达分析. 茶叶科学, 2013, 33: 99-108. |
Cao H L, Hao X Y, Yue C, Ma C L, Wang X C, Yang Y J. Cloning and expression analysis of betaine aldehyde dehydragenase gene (CsBADH1) from tea plant [Camellia sinensis (L.) O. Kuntze]. J Tea Sci, 2013, 33: 99-108. (in Chinese with English abstract) | |
[12] |
Li M, Li Z, Li S, Guo S, Meng Q, Li G, Yang X. Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep, 2014, 32: 42-51
doi: 10.1007/s11105-013-0594-z |
[13] | 赵贺, 冯咏琪, 张默, 王淇, 姜南, 王丕武. 转badh基因玉米自交系苗期抗旱耐盐碱性鉴定分析. 分子植物育种, 2020, 18: 3579-3586. |
Zhao H, Feng Y Q, Zhang M, Wang Q, Jiang N, Wang P W. Authenticate analysis of drought and salinity tolerance of transgenic maize inbred line with badh gene at seedling stage. Mol Plant Breed, 2020, 18: 3579-3586. (in Chinese with English abstract) | |
[14] |
王小丽, 杜建中, 郝曜山, 张丽君, 赵欣梅, 王亦学, 孙毅. 转BADH基因玉米植株的获得及其耐盐性分析. 作物学报, 2014, 40: 1973-1979.
doi: 10.3724/SP.J.1006.2014.01973 |
Wang X L, Du J Z, Hao Y S, Zhang J L, Zhao X M, Wang Y X, Sun Y. Transformation of BADH gene into maize and salt tolerance of transgenic plant. Acta Agron Sin, 2014, 40: 1973-1979. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01973 |
|
[15] | 李春枝, 潘彩霞, 刘宏伟, 刘冰, 罗晓明, 李大红. 转甜菜碱醛脱氢酶基因增强羽衣甘蓝的耐盐性研究. 北方园艺, 2018, 404(5): 33-38. |
Li C Z, Pan C X, Liu H W, Liu B, Luo X M, Li D H. Salinity tolerance in transgenic kale expressing the betaine aldehyde dehydrogenase gene. Northern Hortic, 2018, 404(5): 33-38. (in Chinese with English abstract) | |
[16] | 李秀英, 王丕武. 转BADH基因大豆抗旱、耐盐性及主要农艺性状分析. 江苏农业科学, 2013, 41: 75-77. |
Li X Y, Wang P W. Analysis of drought resistance, salt tolerance and main agronomic traits of BADH transgenic soybean. Jiangsu Agric Sci, 2013, 41: 75-77. (in Chinese with English abstract) | |
[17] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338 |
[18] |
Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran LP. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772 |
[19] |
Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, Chen K, Jiang L, Li J, Gao C. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci, 2021, 64: 1624-1633.
doi: 10.1007/s11427-020-1800-5 pmid: 33165814 |
[20] |
Li J, Wang Z, He G, Ma L, Deng X W. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics, 2020, 47: 263-272.
doi: 10.1016/j.jgg.2020.05.004 |
[21] |
Luo Y, Zhang M, Liu Y, Liu J, Li W, Chen G, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie A R, Yan J. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
doi: 10.1111/nph.v234.2 |
[22] |
Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861 |
[23] |
Hu R B, Fan C M, Li H Y, Zhang Q Z, Fu Y F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol, 2009, 10: 93.
doi: 10.1186/1471-2199-10-93 pmid: 19785741 |
[24] |
Gu Y Z, Li W, Jiang H W, Wang Y, Gao H W, Liu M, Chen Q S, Lai Y C, He C Y. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147 |
[25] |
Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873 |
[26] |
刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1-8.
doi: 10.3724/SP.J.1006.2020.94062 |
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1-8. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94062 |
|
[27] |
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2014, 80: 937-950.
doi: 10.1111/tpj.2014.80.issue-6 |
[28] |
Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo J L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015, 10: e0124633.
doi: 10.1371/journal.pone.0124633 |
[29] |
Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu L J. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci, 2019, 10: 1446.
doi: 10.3389/fpls.2019.01446 pmid: 31824524 |
[30] |
Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z, Kou K, Tang Y, Lin X, Zhao X, Chen L, Liu B, Kong F. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[31] |
Song J H, Shin G, Kim H J, Lee S B, Moon J Y, Jeong J C, Choi H K, Kim I A, Song H J, Kim C Y, Chung Y S. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci, 2022, 23: 10583.
doi: 10.3390/ijms231810583 |
[32] |
Dong L, Hou Z, Li H, Li Z, Fang C, Kong L, Li Y, Du H, Li T, Wang L, He M, Zhao X, Cheng Q, Kong F, Liu B. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. J Integr Plant Biol, 2022, 64: 1866-1882.
doi: 10.1111/jipb.v64.10 |
[33] |
Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141-146.
doi: 10.1007/s00299-002-0489-1 |
[34] |
Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I. Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep, 2010, 4: 75-83.
doi: 10.1007/s11816-009-0123-6 |
[35] |
Tang W, Sun J, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410 |
[36] |
He Q, Yu J, Kim T S, Cho Y H, Lee Y S, Park Y J. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS One, 2015, 10: e0134801.
doi: 10.1371/journal.pone.0134801 |
[37] |
Fitzgerald T L, Waters D L E, Henry R J. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl- 1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci, 2008, 175: 539-546.
doi: 10.1016/j.plantsci.2008.06.005 |
[38] | 胡雯恬. 大豆幼苗性状耐盐碱胁迫能力优异等位变异的挖掘. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2020. |
Hu W T. Mining of Excellent Allelic Variation of Saline-alkali Stress Tolerance in Soybean Seedlings. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract) | |
[39] |
Chen Z H, Cuin T A, Zhou M X, Twomey A, Naidu B P, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot, 2007, 58: 4245-4255
doi: 10.1093/jxb/erm284 pmid: 18182428 |
[40] |
Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci, 2020, 7: 1902312.
doi: 10.1002/advs.v7.6 |
[1] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[2] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[3] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[4] | 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171. |
[5] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[6] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[7] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[8] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[9] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[10] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[11] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[12] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[13] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[14] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[15] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
|