欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 100-109.doi: 10.3724/SP.J.1006.2024.34056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性

石宇欣1,2(), 刘欣玥1,2, 孙建强1,2, 李晓菲1,2, 郭潇阳2, 周雅2, 邱丽娟1,2,*()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150030
    2农作物基因资源与遗传改良国家重大科学工程 / 农业农村部种质资源利用重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-03-17 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-26
  • 通讯作者: *邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:石宇欣, E-mail: 2279790926@qq.com

    **同等贡献

  • 基金资助:
    国家重点研发计划项目: “北方大豆高产优质耐密新种质创制与应用项目”(2021YFD1201104)

Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean

SHI Yu-Xin1,2(), LIU Xin-Yue1,2, SUN Jian-Qiang1,2, LI Xiao-Fei1,2, GUO Xiao-Yang2, ZHOU Ya2, QIU Li-Juan1,2,*()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-03-17 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-26
  • Contact: *E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program of China: "the Development and Application of High Yield, High Quality and Dense Tolerance New Germplasm of Soybean in Northern China"(2021YFD1201104)

摘要:

耐盐基因功能鉴定对于大豆品种改良以及盐碱地的开发利用至关重要。盐害胁迫下作物通过合成和积累甜菜碱作为渗透保护剂, 减小盐害对作物产量的影响。BADH基因已在多种植物中被证实调节植物对逆境胁迫的响应, 但在大豆中的调控机制尚不清晰。本研究克隆了GmBADH1基因, qRT-PCR显示该基因在根、茎、叶中均有表达, 尤其在根中的表达丰度最高。通过农杆菌介导的大豆遗传转化技术将CRISPR/Cas9系统构建的表达载体转入到大豆品种JACK中, 产生了3种可以调控大豆耐盐性状的靶向突变, 均发生在编码区, 分别为缺失19 bp、插入1 bp、插入9 bp替换2 bp。前两者, 过早出现的终止密码子, 使其均产生截断的BADH1蛋白, 后者发生移码突变。在出苗期和苗期分别对突变纯合植株进行盐处理, 结果表明, 出苗期耐盐性与野生型相比显著下降, 苗期与野生型相比无明显差异。这说明GmBADH1基因可能主要调控出苗期的耐盐性状。本研究为深入挖掘大豆耐盐基因和培育大豆耐盐品种提供了依据。

关键词: 大豆, GmBADH1, CRISPR/Cas9, 耐盐性

Abstract:

Functional identification of salt-tolerant genes is crucial for the improvement of soybean varieties and the development and utilization of saline-alkali land. Under salt stress, crops reduce the effect of salt damage on crop yield by synthesizing and accumulating betaine as osmotic protective agent. BADH gene is been proved to regulate plant response to stress in many plants, but the regulation mechanism in soybean is not clear. In this study, GmBADH1 gene was cloned, and qRT-PCR showed that the gene was expressed stems and leaves, especially in roots. The expression vector constructed by CRISPR/Cas9 system was transferred into soybean variety JACK by Agrobacterium-mediated soybean genetic transformation technology, and three targeted mutations that could regulate the salt tolerance of soybean were produced. They all occurred in the coding region, which had three difference of deletion 19 bp, insertion 1 bp, and insertion 9 bp to replace 2 bp. The first two, premature termination codons, resulting in truncated BADH1 protein, the latter occurred frameshift mutation. The mutant homozygous plants were treated with salt at the emergence stage and seedling stage, respectively. The results showed that the salt tolerance of the mutant homozygous plants was significantly lower than that of the wild type at seedling stage, and there was no significant difference compared with the wild type at seeding stage, which indicating that GmBADH1 gene may mainly regulate the salt tolerance of seedling stage. This study provides a basis for further excavation of soybean salt-tolerant genes and cultivation of soybean salt-tolerant varieties.

Key words: soybean, GmBADH1, CRISPR/Cas9, salt tolerance

表1

本研究所用引物"

引物名称
Primer name
正向序列
Forward sequence (5°-3°)
反向序列
Reverse sequence (5°-3°)
D-GmBADH1-F/R AGCAAGAACAAGACGTAGCCT AGCGATGGCTCGAAGATAGC
zCAS9-F/R AAGAACCTGCCAAATGAGA CCTTGAATGTGAGGCTGTC
J-CDS-F/R ATGGCAATCTCCATACCCA TCACAGCTTTGAAGGCGAC
GmBADH1-off target-F1/R1 AGTTCTTCTGCCTCATTCC AGAATAGCCACATAATCCC
GmBADH1-off target-F2/R2 GCGTTTGTTTCACCAGTTT ATAGATGTAAGGAGGAGGG
GmBADH1-off target-F3/R3 AGATCAGTTCGCCTTGTAG AAATTATAGCAGGACCCAC
GmBADH1-off target-F4/R4 AGGAGGTCTGCTATTTATT CACTTTATAGAAGCCAAATC
Actin-18g290800 GGTGGTTCTATCTTGGCATC CTTTCGCTTCAATAACCCTA
qPCR-BADH1-F/R GAAGCACTGGCAGACCTGG GGGCTCCTTGAGAACATAA

表2

盐胁迫后大豆出苗期和苗期的盐害症状"

时期
Stage
类别
Category
表型特征
Symptom
出苗期
Emergence stage
I 植株凋亡, 子叶干枯(类别数值为1)
Plant deed, cotyledons were dry (category value is 1)
II 植株生长受到严重抑制, 子叶未展开(类别数值为2)
Plant groeth was severly inhibited (category value is 2)
III 植株生长受到抑制, 具有生长点, 但真叶未展开(类别数值为3)
Plant growth was inhibited, with shoot apical meristem, but true leaves were not unfolded (category value is 3)
IV 植株生长基本正常, 真叶未完全展开(类别数值为4)
Plant growth was basically normal, true leaves were not fully expanded (category value is 4)
V 植株生长正常, 真叶完全展开(类别数值为5)
The plant grow was normal,the true leaves were fully expanded (category value is 5)
苗期
Seedling stage
1 健康的绿叶, 没有观察到损伤
Healthy green leaves, no damage observed
2 轻度坏死, 真叶轻微发黄
Slight chlorosis, light yellowish color observed in ture leaves
3 中度坏死, 三出复叶发黄
Moderate chlorosis, chlorosis observed in trifoliate leaves
4 严重坏死, 超过75%的叶面发黄
Severe chlorosis,more than 75% of the leaf area showed chlorosis
5 凋亡, 植物完全枯萎
Dead, plants were completely withered

图1

GmBADH1基因表达模式分析 A: GmBADH1基因在3个不同组织中的表达模式(水处理)。不同小写字母表示之间差异显著(P < 0.05); B: GmBADH1基因在不同组织、不同盐水处理时间下的表达模式, 2 h、8 h、24 h表示盐胁迫下植物取样的时间节点, 盐处理浓度为150 mmol L-1, 误差线表示标准误差。差异显著性分析采用t检测方法。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图2

GmBADH1的gRNA靶点和pBSE401-GmBADH1-g6表达载体重组示意图 A: GmBADH1的gRNA靶点位置; B: 靶点gRNA表达盒与pBSE401重组示意图。"

图3

T1和T2纯合突变体筛选 A: 核苷酸变异; B: 对应测序峰图; C: 氨基酸序列比对。"

表3

纯合突变体编辑基因型"

材料名称
Materials name
编码序列CDS sequence 氨基酸序列
Sequence of amino acid
长度Length 变异Variation
JACK CDS:1512 bp no 504个氨基酸
504 amino acids
BADH1-L1 1513 bp +1 bp 提前终止, 剩余32个氨基酸
Premature termination, residue 32 amino acids
BADH1-L3 1521 bp +9/replace2 bp 缺失3个氨基酸, 替换4个氨基酸
Miss 3 amino acids and substitude for 4 amino acids
BADH1-L4 1493 bp -19 bp 提前终止, 剩余29个氨基酸
Premature termination, residue 29 amino acids

表4

CRISPR介导BADH1基因T1~T2靶向突变植株数"

突变位点
Site of
mutation
T1 T2
纯合植株数目
No. of
homozygous plants
杂合植株数目
No. of
heterzygous plants
野生型植株数目
No. of
mutant
plants
纯合植株数目
No. of
homozygous plants
杂合植株数目
No. of
heterzygous plants
野生型植株数目
No. of
mutant
plants
L1 2 5 35 3 6 23
L3 2 10 56 3 3 8
L4 0 8 9 4 11 47
总数Total 4 23 100 10 20 78

表5

BADH1-Target的潜在的脱靶位点预测"

潜在靶点
Potential target
物理位置
Physical position
靶点序列
Target sequence
位置
Position
Off-target-1 Glyma.08G210000 Chr08:16998801-16998823 CCTTTGCA[TAGTTGTCTACT] TGG CDS
Off-target-2 Glyma.07G032500 Chr07:2553714-2553736 CCTTTGCA[TAGTTGTCTACT] TGG CDS
Off-target-3 Glyma.18G016000 Chr18:1148893-1148915 GCTATTAA[AAATAGTCTACT] TGG CDS
Off-target-4 Glyma.17G194300 Chr17:29066147-29066169 TTGATGAA[ATGTTGTCTTCT] TGG CDS

表6

无转基因检测"

株系
Line
检测植株数
No. of plant
detection
无T-DNA植株数量
No. of plants without T-DNA
L1 5 2
L3 5 5
L4 4 4
总数Total 14 11

图4

阳性鉴定与转基因成分鉴定 A: PAT/Bar试纸条检测选择标记筛选, 红色箭头表示Bar基因为阳性; B: T-DNA区域PCR产物的凝胶图像, Cas9是编码序列的一部分, 泳道1~5为L1; 泳道6~10为L3; 泳道11~14为L4; 泳道15为阴性对照; 泳道16为阳性对照, 片段长度619 bp。C: sgRNA检测, 样品同Cas9检测, 片段长度512 bp。"

表7

GmBADH1纯合植株耐盐鉴定"

遗传材料
Genetic
materials
突变位点
Site of mutation
出苗期耐盐鉴定
Identification of salt tolerance at seedling stage
苗期耐盐鉴定
Identification of salt tolerance at seedling stage
耐盐等级
Salt tolerance rating
等级描述
Description of rank
耐盐等级
Salt tolerance rating
等级描述
Rank description
野生型WT CDS:1512 bp 1 高度耐盐High salt-tolerant 3 盐敏感Salt sensitivity
BADH1-L1 +1 bp 4 敏感型Salt-sensitive 3 盐敏感Salt sensitivity
BADH1-L3 +9/replace 2 bp 3 中度耐盐Moderate salt-tolerant 3 盐敏感Salt sensitivity
BADH1-L4 -19 bp 2 耐盐Salt-tolerant 3 盐敏感Salt sensitivity

图5

出苗期突变体耐盐表型鉴定 a为野生型植株; b~d为突变植株; e为阴性对照: 盐敏感材料野生豆NY27-38; f为阳性对照: 耐盐材料栽培豆中黄39; 出苗期处理盐浓度为150 mmol L-1, 于第15天进行评级。"

[1] Conde A, Chaves M M, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol, 2011, 52: 1583-1602.
doi: 10.1093/pcp/pcr107 pmid: 21828102
[2] Hashemi F S G, Ismail M R, Rafii M Y, Aslani F, Miah G, Muharam F M. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. Biotechnol Equip, 2018, 32: 815-829.
[3] Bao Y, Zhao R, Li F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379-388.
[4] Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155-162.
doi: 10.1007/BF00192524 pmid: 7764986
[5] Meng Y L, Wang Y M, Zhang B, Nii N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res, 2001, 11: 187-193.
pmid: 11642403
[6] Niazian M, Sadat-Noori S A, Tohidfar M, Galuszka P, Mortazavian S M M. Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crop Prod, 2019, 132: 29-40.
doi: 10.1016/j.indcrop.2019.02.005
[7] Wai A H, Naing A H, Lee D J, Kim C K, Chung M Y. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnol Rep, 2020, 14: 515-537.
doi: 10.1007/s11816-020-00638-1
[8] Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA, 1990, 87: 2745-2749.
pmid: 2320587
[9] Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant, 2008, 134: 22-30.
doi: 10.1111/j.1399-3054.2008.01122.x pmid: 18429940
[10] 唐露, 杨振, 乔飞, 李新国. 香蕉BADH基因序列及表达特性分析. 分子植物育种, 2019, 17: 719-728.
Tang L, Yang Z, Qiao F, Li X G. Sequence analysis and expression characteristics of BADH gene in banana. Mol Plant Breed, 2019, 17: 719-728. (in Chinese with English abstract)
[11] 曹红利, 郝心愿, 岳川, 马春雷, 王新超, 杨亚军. 茶树甜菜碱醛脱氢酶基因(CsBADH1)的全长cDNA克隆与表达分析. 茶叶科学, 2013, 33: 99-108.
Cao H L, Hao X Y, Yue C, Ma C L, Wang X C, Yang Y J. Cloning and expression analysis of betaine aldehyde dehydragenase gene (CsBADH1) from tea plant [Camellia sinensis (L.) O. Kuntze]. J Tea Sci, 2013, 33: 99-108. (in Chinese with English abstract)
[12] Li M, Li Z, Li S, Guo S, Meng Q, Li G, Yang X. Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep, 2014, 32: 42-51
doi: 10.1007/s11105-013-0594-z
[13] 赵贺, 冯咏琪, 张默, 王淇, 姜南, 王丕武. 转badh基因玉米自交系苗期抗旱耐盐碱性鉴定分析. 分子植物育种, 2020, 18: 3579-3586.
Zhao H, Feng Y Q, Zhang M, Wang Q, Jiang N, Wang P W. Authenticate analysis of drought and salinity tolerance of transgenic maize inbred line with badh gene at seedling stage. Mol Plant Breed, 2020, 18: 3579-3586. (in Chinese with English abstract)
[14] 王小丽, 杜建中, 郝曜山, 张丽君, 赵欣梅, 王亦学, 孙毅. 转BADH基因玉米植株的获得及其耐盐性分析. 作物学报, 2014, 40: 1973-1979.
doi: 10.3724/SP.J.1006.2014.01973
Wang X L, Du J Z, Hao Y S, Zhang J L, Zhao X M, Wang Y X, Sun Y. Transformation of BADH gene into maize and salt tolerance of transgenic plant. Acta Agron Sin, 2014, 40: 1973-1979. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01973
[15] 李春枝, 潘彩霞, 刘宏伟, 刘冰, 罗晓明, 李大红. 转甜菜碱醛脱氢酶基因增强羽衣甘蓝的耐盐性研究. 北方园艺, 2018, 404(5): 33-38.
Li C Z, Pan C X, Liu H W, Liu B, Luo X M, Li D H. Salinity tolerance in transgenic kale expressing the betaine aldehyde dehydrogenase gene. Northern Hortic, 2018, 404(5): 33-38. (in Chinese with English abstract)
[16] 李秀英, 王丕武. 转BADH基因大豆抗旱、耐盐性及主要农艺性状分析. 江苏农业科学, 2013, 41: 75-77.
Li X Y, Wang P W. Analysis of drought resistance, salt tolerance and main agronomic traits of BADH transgenic soybean. Jiangsu Agric Sci, 2013, 41: 75-77. (in Chinese with English abstract)
[17] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[18] Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran LP. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772
[19] Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, Chen K, Jiang L, Li J, Gao C. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci, 2021, 64: 1624-1633.
doi: 10.1007/s11427-020-1800-5 pmid: 33165814
[20] Li J, Wang Z, He G, Ma L, Deng X W. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics, 2020, 47: 263-272.
doi: 10.1016/j.jgg.2020.05.004
[21] Luo Y, Zhang M, Liu Y, Liu J, Li W, Chen G, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie A R, Yan J. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
doi: 10.1111/nph.v234.2
[22] Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861
[23] Hu R B, Fan C M, Li H Y, Zhang Q Z, Fu Y F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol, 2009, 10: 93.
doi: 10.1186/1471-2199-10-93 pmid: 19785741
[24] Gu Y Z, Li W, Jiang H W, Wang Y, Gao H W, Liu M, Chen Q S, Lai Y C, He C Y. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147
[25] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873
[26] 刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1-8.
doi: 10.3724/SP.J.1006.2020.94062
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1-8. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94062
[27] Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2014, 80: 937-950.
doi: 10.1111/tpj.2014.80.issue-6
[28] Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo J L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015, 10: e0124633.
doi: 10.1371/journal.pone.0124633
[29] Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu L J. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci, 2019, 10: 1446.
doi: 10.3389/fpls.2019.01446 pmid: 31824524
[30] Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z, Kou K, Tang Y, Lin X, Zhao X, Chen L, Liu B, Kong F. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[31] Song J H, Shin G, Kim H J, Lee S B, Moon J Y, Jeong J C, Choi H K, Kim I A, Song H J, Kim C Y, Chung Y S. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci, 2022, 23: 10583.
doi: 10.3390/ijms231810583
[32] Dong L, Hou Z, Li H, Li Z, Fang C, Kong L, Li Y, Du H, Li T, Wang L, He M, Zhao X, Cheng Q, Kong F, Liu B. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. J Integr Plant Biol, 2022, 64: 1866-1882.
doi: 10.1111/jipb.v64.10
[33] Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141-146.
doi: 10.1007/s00299-002-0489-1
[34] Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I. Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep, 2010, 4: 75-83.
doi: 10.1007/s11816-009-0123-6
[35] Tang W, Sun J, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410
[36] He Q, Yu J, Kim T S, Cho Y H, Lee Y S, Park Y J. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS One, 2015, 10: e0134801.
doi: 10.1371/journal.pone.0134801
[37] Fitzgerald T L, Waters D L E, Henry R J. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl- 1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci, 2008, 175: 539-546.
doi: 10.1016/j.plantsci.2008.06.005
[38] 胡雯恬. 大豆幼苗性状耐盐碱胁迫能力优异等位变异的挖掘. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2020.
Hu W T. Mining of Excellent Allelic Variation of Saline-alkali Stress Tolerance in Soybean Seedlings. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract)
[39] Chen Z H, Cuin T A, Zhou M X, Twomey A, Naidu B P, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot, 2007, 58: 4245-4255
doi: 10.1093/jxb/erm284 pmid: 18182428
[40] Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci, 2020, 7: 1902312.
doi: 10.1002/advs.v7.6
[1] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[2] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[3] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[4] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[5] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[6] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[7] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[8] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[9] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[10] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[11] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[12] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[13] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[14] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[15] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .