作物学报 ›› 2024, Vol. 50 ›› Issue (4): 820-835.doi: 10.3724/SP.J.1006.2024.34144
李阳阳1,2,3(), 吴丹2,3, 许军红2,3, 陈倬永1,2,3, 徐昕媛1,2,3, 徐金盼1,2,3, 唐钟林1,2,3, 张娅茹1,2,3, 朱丽1,2,3, 严卓立1,2,3, 周清元1,2,3, 李加纳1,2,3, 刘列钊1,2,3, 唐章林1,2,3,*()
LI Yang-Yang1,2,3(), WU Dan2,3, XU Jun-Hong2,3, CHEN Zhuo-Yong1,2,3, XU Xin-Yuan1,2,3, XU Jin-Pan1,2,3, TANG Zhong-Lin1,2,3, ZHANG Ya-Ru1,2,3, ZHU Li1,2,3, YAN Zhuo-Li1,2,3, ZHOU Qing-Yuan1,2,3, LI Jia-Na1,2,3, LIU Lie-Zhao1,2,3, TANG Zhang-Lin1,2,3,*()
摘要:
干旱胁迫严重限制了甘蓝型油菜种植面积的扩大和产量的提升。耐旱性是由多基因控制的复杂数量性状, 将QTL定位与转录组测序相结合, 是鉴定甘蓝型油菜耐旱候选基因的有效手段。本研究对甘蓝型油菜干旱敏感品系三六矮和耐旱品系科里纳-2构建的F2:6和F2:8重组自交系群体幼苗进行正常灌溉和干旱胁迫处理, 测定地上部鲜重、地上部干重、叶片相对含水量、丙二醛和可溶性糖含量, 利用SSR和SNP多态性分子标记构建遗传连锁图谱, 鉴定耐旱相关QTL和候选区间, 结合耐旱材料No11和干旱敏感材料No28的转录组测序, 筛选耐旱相关候选基因。研究结果表明: 干旱胁迫使甘蓝型油菜幼苗地上部鲜重、地上部干重和叶片相对含水量下降, 使叶片丙二醛和可溶性糖含量上升; 耐旱相关QTL和候选区间分布于A01、A02、A06、A08、A09、A10、C02、C03、C04、C06和C09染色体; 对耐旱材料和干旱敏感材料正常灌溉、干旱24 h、36 h和48 h进行转录组分析, 主要差异表达基因显著富集到光合作用、脂肪酸代谢、氨基酸代谢、植物激素信号转导、核糖体、昼夜节律及角质、木栓素和蜡质的生物合成等相关途径; 将QTL与转录组测序相结合, 鉴定到28个耐旱相关候选基因, 主要编码FLC、bHLH105、TGA4、TEM1、ERF003、ACO3、CHLI1、LHCB6和PORC等, 具有转录因子活性、乙烯产生和信号传导、叶绿素生物合成与结合、叶绿素氧化还原酶以及编码核糖体相关蛋白等功能。这些结果可为揭示甘蓝型油菜耐旱机理及分子标记辅助选育耐旱新品种奠定基础。
[1] |
Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, Wang B, Zhou G S. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.
doi: 10.3390/agronomy12030579 |
[2] |
周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633 |
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract) | |
[3] |
宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017 |
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Xiang C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.34017 |
|
[4] |
张佳运, 马淑梅, 余常兵, 王淑彬, 魏亚凤, 杨文钰, 王小春. 长江流域旱地多熟模式水分供需平衡特征与水分生产效益. 作物学报, 2022, 48: 2891-2907.
doi: 10.3724/SP.J.1006.2022.14206 |
Zhang J Y, Ma S M, Yu C B, Wang S B, Wei Y F, Yang W Y, Wang X C. Characteristics of water supply-demand equilibrium and water production benefits of the dryland multiple cropping patterns in the Yangtze Rive basin. Acta Agron Sin, 2022, 48: 2891-2907. (in Chinese with English abstract) | |
[5] | 万林, 李张开, 李素, 刘丽欣, 马霓, 张春雷. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42: 461-471. |
Wan L, Li Z K, Li S, Liu L X, Ma N, Zhang C L. Alleviation effects of exogenous strigolactone on growth of Brassica napus L. seedling under drought stress. Chin J Oil Crop Sci, 2020, 42: 461-471. (in Chinese with English abstract) | |
[6] |
蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034 |
Meng J Y, Liang G W, He Y J, Qian W. QTL mapping of salt and drought tolerance related traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034 |
|
[7] | 李真. 甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2008. pp 46-48. |
Li Z. Study on QTL Associated with Waterlogging Tolerance and Drought Resistance during Seedling Stage in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008. pp 46-48. (in Chinese with English abstract) | |
[8] | 王丹丹. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位. 西南大学硕士学位论文, 重庆, 2013. pp 32-33. |
Wang D D. Mapping and QTL Analysis of Genes to Drought Tolerance in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013. pp 32-33. (in Chinese with English abstract) | |
[9] |
Mahmoud G, Chao H B, Li H X, Zhao W G, Lu G Y, Li M T. QTL mapping for seed germination response to drought stress in Brassica napus. Front Plant Sci, 2021, 11: 629970.
doi: 10.3389/fpls.2020.629970 |
[10] |
Shahzad A, Qian M C, Sun B Y, Mahmood U, Li S T, Fan Y H, Chang W, Dai L S, Zhu H, Li J N, Qu C M, Lu K. Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci, 2021, 6: 12-22.
doi: 10.1016/j.ocsci.2021.01.002 |
[11] |
Khanzada H, Wassan G M, He H H, Mason A S, Keerio A A, Khanzada S, Faheem M, Solangi A M, Zhou Q H, Fu D H, Huang Y J, Rasheed A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. J Adv Res, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019 pmid: 32577311 |
[12] |
Tan M, Liao F, Hou L T, Wang J, Wei L J, Jian H J, Xu X F, Li J N, Liu L Z. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica, 2017, 213: 40.
doi: 10.1007/s10681-016-1832-x |
[13] | 王浩. 基于GWAS和转录组测序鉴定谷子硒响应相关候选基因. 山西农业大学硕士学位论文, 山西太原, 2022. p 9. |
Wang H. Identification of Selenium-Responsive Candidate Genes in Foxtail Millet Based on GWAS and Transcriptome Sequencing. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China, 2022. p 9. (in Chinese with English abstract) | |
[14] |
Liu C Q, Zhang X K, Zhang K, An H, Hu K N, Wen J, Shen J X, Ma C Z, Yi B, Tu J X, Fu T D. Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress. Int J Mol Sci, 2015, 16: 18752-18777.
doi: 10.3390/ijms160818752 |
[15] |
Wang P, Yang C L, Chen H, Song C P, Zhang X, Wang D J. Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep, 2017, 7: 40532.
doi: 10.1038/srep40532 pmid: 28091614 |
[16] |
Zhou H W, Xiao X J, Asjad A, Han D P, Zheng W, Xiao G B, Huang Y J, Zhou Q H. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). BMC Plant Biol, 2022, 22: 130.
doi: 10.1186/s12870-022-03508-w |
[17] |
Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019, 20: 21.
doi: 10.1186/s12864-018-5356-8 |
[18] |
Guo J, Li C H, Zhang X Q, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Yang D G, Wang T Y. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380 |
[19] |
Sevanthi A M, Sinha S K, Sureshkumar V, Rani M, Saini M R, Kumari S, Kaushik M, Prakash C, Venkatesh K, Singh G P, Mohapatra T, Mandal P K. Integration of dual stress transcriptomes and major QTL from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 2021, 14: 49.
doi: 10.1186/s12284-021-00487-8 pmid: 34089405 |
[20] | 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017. p 16. |
Jing R R. Genome-wide Assocaiton Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. p 16. (in Chinese with English abstract) | |
[21] | Van Ooijen J W. JoinMap 4: Software for the Calculation of Genetic Linkage Maps in Experimental Populations, 2006. Wageningen: Kyazma B V. pp 1-63. |
[22] | Van Ooijen J W. MapQTL 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species, 2009. Wageningen: Kyazma B V. pp 1-64. |
[23] |
Voorrips R E, MapChart: software for the graphical presentation of linkage maps and QTL. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[24] |
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190 |
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping for single-seed weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170. (in Chinese with English abstract) | |
[25] |
李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027 |
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract) | |
[26] | 王瑞霞, 杜海平, 田宏先. 干旱胁迫对不同生育期芥菜型春油菜幼苗生长的影响. 南方农业, 2019, 13(26): 140-143. |
Wang R X, Du H P, Tian H X. Effects of drought stress on the growth of seedlings at different growth stages in spring Brassica juncea. South China Agric, 2019, 13(26): 140-143. (in Chinese) | |
[27] | 石鹏程. 甘蓝型油菜苗期干旱及旱后复水相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2019. p 15. |
Shi P C. Genome-wide Association Mapping for Drought and Rewatering Related Traits at Seedling Stage in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2019. p 15. (in Chinese with English abstract) | |
[28] |
谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46: 476-485.
doi: 10.3864/j.issn.0578-1752.2013.03.004 |
Xie X Y, Zhang X, Zhang B. Evalution of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Sci Agric Sin, 2013, 46: 476-485. (in Chinese with English abstract) | |
[29] | 洪双. 全基因组关联分析挖掘甘蓝型油菜耐旱候选基因. 中国农业科学院硕士学位论文, 北京, 2018. pp 31-32. |
Hong S. Genome-wide Association Study Identifies Candidate Genes for Drought Tolerance in Brassica napus. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. pp 31-32. (in Chinese with English abstract) | |
[30] | 吴金锋. 甘蓝型油菜SNP与SSR分析及耐旱性状的全基因组关联分析. 中国农业科学院博士学位论文, 北京, 2014. pp 27-28. |
Wu J F. SNP and SSR Analysis and Genome-wide Association Mapping of Drought Tolerance Trait in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. pp 27-28. (in Chinese with English abstract) | |
[31] |
Zhu B, Xu H X, Guo X, Lu J X, Liu X Y, Zhang T. Comparative analysis of drought responsive transcriptome in Brassica napus genotypes with contrasting drought tolerance under different potassium levels. Euphytica, 2023, 219: 25.
doi: 10.1007/s10681-023-03156-7 |
[32] |
Fang S, Zhao P M, Tan Z D, Peng Y, Xu L T, Jin Y T, Wei F, Guo L, Yao X. Combining physio-biochemical characterization and transcriptome analysis reveal the responses to varying degrees of drought stress in Brassica napus L. Int J Mol Sci, 2022, 23: 8555.
doi: 10.3390/ijms23158555 |
[33] |
Xiong J L, Dai L L, Ma N, Zhang C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul, 2018, 85: 73-90.
doi: 10.1007/s10725-018-0374-8 |
[34] |
Chen Q, Zheng Y, Luo L D, Yang Y P, Hu X Y, Kong X X. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana. Biochem Biophys Res Commun, 2018, 495: 1102-1107.
doi: 10.1016/j.bbrc.2017.11.149 |
[35] |
Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109.
doi: S0168-9452(18)31005-7 pmid: 30824033 |
[36] |
Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Chen M, Ma Y Z. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun, 2015, 457: 433-439.
doi: 10.1016/j.bbrc.2015.01.009 |
[37] |
Luo G Y, Liu A L, Zhou X Y, Zhang X W, Peng Y, Chen X B. Arabidopsis TEMPRANILLO1 transcription factor AtTEM1 negatively regulates drought tolerance. Plant Growth Regul, 2017, 83: 119-127.
doi: 10.1007/s10725-017-0288-x |
[38] |
Naing A H, Campol J R, Kang H, Xu J P, Chung M Y, Kim C K. Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in Petunia. Front Plant Sci, 2022, 13: 844449.
doi: 10.3389/fpls.2022.844449 |
[39] |
Liu W J, Wang Y C, Gao C Q. The ethylene response factor (ERF) genes from Tamarix hispida respond to salt, drought and ABA treatment. Trees, 2013, 28: 317-327.
doi: 10.1007/s00468-013-0950-5 |
[40] |
Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105 |
[41] |
Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F, Zhang D P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot, 2012, 63: 1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917 |
[42] |
Pattanayak G K, Tripathy B C. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS One, 2011, 6: e26532.
doi: 10.1371/journal.pone.0026532 |
[43] |
Tomiyama M, Inoue S I, Tsuzuki T, Soda M, Morimoto S, Okigaki Y, Ohishi T, Mochizuki N, Takahashi K, Kinoshita T. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. J Plant Res, 2014, 127: 553-563.
doi: 10.1007/s10265-014-0636-0 |
[44] |
Condori-Apfata J A, Batista-Silva W, Medeiros D B, Vargas J R, Valente L M L, Pérez-Díaz J L, Fernie A R, Araújo W L, Nunes- Nesi A. Downregulation of the E2 subunit of 2-Oxoglutarate dehydrogenase modulates plant growth by impacting carbon- nitrogen metabolism in Arabidopsis thaliana. Plant Cell Physiol, 2021, 62: 798-814.
doi: 10.1093/pcp/pcab036 pmid: 33693904 |
[45] |
Niu C D, Jiang L J, Cao F G, Liu C, Guo J X, Zhang Z T, Yue Q Y, Hou N, Liu Z Y, Li X W, Tahir M M, He J Q, Li Z X, Li C, Ma F W, Guan Q M. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. Plant Cell, 2022, 34: 3983-4006.
doi: 10.1093/plcell/koac220 |
[46] |
Seraj R G M, Tohidfar M, Irani M A, Esmaeilzadeh-Salestani K, Moradian T, Ahmadikhah A, Behnamian M. Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes. Sci Rep, 2022, 12: 12827.
doi: 10.1038/s41598-022-16887-9 pmid: 35896570 |
[47] |
Pandian B A, Sathishraj R, Djanaguiraman M, Prasad P V V, Jugulam M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants, 2020, 9: 454.
doi: 10.3390/antiox9050454 |
[48] |
Pal G, Bakade R, Deshpande S, Sureshkumar V, Patil S S, Dawane A, Agarwal S, Niranjan V, PrasannaKumar M K, Vemanna R S. Transcriptomic responses under combined bacterial blight and drought stress in rice reveal potential genes to improve multi-stress tolerance. BMC Plant Biol, 2022, 22: 349.
doi: 10.1186/s12870-022-03725-3 pmid: 35850621 |
[1] | 钟元, 朱天宇, 戴成, 马朝芝 . 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171. |
[2] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[3] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
[4] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[5] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[6] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[7] | 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029. |
[8] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[9] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968. |
[10] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[11] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[12] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[13] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[14] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[15] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
|