欢迎访问作物学报,今天是

作物学报, 2024, 50(8): 1896-1906 DOI: 10.3724/SP.J.1006.2024.43007

作物遗传育种·种质资源·分子遗传学

基于大刍草渗入系的玉米抗旱优异等位基因挖掘

刘爽,, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉,*

作物基因资源与育种全国重点实验室 / 中国农业科学院作物科学研究所, 北京 100081

Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte

LIU Shuang,, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui,*

State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

通讯作者: * 李春辉, E-mail:lichunhui@caas.cn

收稿日期: 2024-01-24   接受日期: 2024-04-1   网络出版日期: 2024-04-22

基金资助: 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-03)
中国农业科学院科技创新工程项目(CAAS-ZDRW202004)

Corresponding authors: * E-mail:lichunhui@caas.cn

Received: 2024-01-24   Accepted: 2024-04-1   Published online: 2024-04-22

Fund supported: China Agriculture Research System of MOF and MARA(CARS-02-03)
Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202004)

作者简介 About authors

摘要

干旱是影响玉米生产的主要非生物胁迫之一。为了挖掘玉米优异抗旱基因, 本研究基于墨西哥大刍草和玉米自交系PH4CV构建的BC2F6群体, 通过苗期抗旱性初步鉴定, 筛选出抗旱性强的渗入系TP180。干旱胁迫后发现渗入系TP180较轮回亲本PH4CV萎蔫程度更小, 并且复水后存活率显著高于PH4CV。全基因组基因型鉴定发现, 渗入系TP180含有0.6%的墨西哥大刍草导入。通过开展TP180和PH4CV不同水分条件下的转录组测序, 在渗入系TP180和PH4CV之间共鉴定了 2307个差异表达基因, 不同胁迫重叠差异表达基因共122个, 这些基因涉及生长素途径, 茉莉酸途径等, 包含多个转录因子。整合差异表达基因和含大刍草导入区段分析, 鉴定出2个抗旱候选基因Zm00001d033050Zm00001d002025, 并进一步开展了RT-PCR分析。本研究为挖掘大刍草中抗旱基因资源提供了重要材料和信息基础。

关键词: 玉米; 大刍草; 渗入系; 抗旱; 转录组分析

Abstract

Drought is one of the major abiotic stresses affecting maize production. In order to explore new genes for drought tolerance in maize, the BC2F6 population constructed on the basis of teosinte and PH4CV was screened for the drought-tolerant introgression lines TP180 through the preliminary identification of drought tolerance at seedling stage. After drought stress, the TP180 was less wilting than its recurrent parent PH4CV, and the survival rate of TP180 was significantly higher than PH4CV after rehydration. Genome-wide genotypic identification revealed that introgression line TP180 contained 0.6% of the teosinte genome. By transcriptomic analysis of TP180 and PH4CV under different water conditions, a total of 2307 differentially expressed genes were identified between TP180 and PH4CV, and 122 of the differentially expressed genes were identified under both two drought stresses conditions. These genes were related to the growth hormone pathway, jasmonic acid pathway, etc., and contained multiple transcription factors. Integrating the differentially expressed genes and the analysis of introgression region containing the teosinte genome, two drought-resistant candidate genes (Zm00001d033050 and Zm00001d002025) were identified and further validated by RT-PCR. This study provides an important germplasm and information for mining drought-resistant gene of the teosinte.

Keywords: maize; teosinte; introgression line; drought tolerance; transcriptomic analysis

PDF (3040KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘. 作物学报, 2024, 50(8): 1896-1906 DOI:10.3724/SP.J.1006.2024.43007

LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte. Acta Agronomica Sinica, 2024, 50(8): 1896-1906 DOI:10.3724/SP.J.1006.2024.43007

玉米是我国重要的粮食作物、饲料和工业原料, 2023年玉米播种面积达到0.442亿公顷, 主要分布在东北、华北、黄淮海、西北和西南区。这些玉米主产区每年受到不同程度的干旱胁迫, 每年因干旱导致我国玉米产量损失达到了20%以上[1]。创制抗旱优异种质, 培育抗旱玉米新品种是解决以上问题的有效途经。随着转基因、基因编辑技术的发展和育种应用, 挖掘抗旱关键基因, 为玉米抗旱育种提供了更直接和有效的途经。

玉米抗旱性是由多基因控制的复杂数量遗传性状, 先前已经检测到了数百个与抗旱性相关的QTL[2-3]。随着高通量测序技术的发展, 基于遗传连锁不平衡(Linkage Disequilibrium, LD)的全基因组关联分析方法可以有效地将表型与基因型联系起来, 为玉米抗旱性关键基因的挖掘提供重要途径[4]。目前通过GWAS方法克隆了ZmTIP1ZmVPP1ZmSRO1dZmNF-YB2ZmNAC111、ZmCIPK3等抗旱基因[5]。例如, Wang等[6]利用367份玉米自交系组成的关联群体对玉米苗期抗旱性进行了全基因组关联分析, 挖掘到42个与抗旱性相关的候选基因, 并验证了其中候选基因ZmVPP1的生物学功能, ZmVPP1过表达能够促进根系的发育和提高玉米苗期抗旱性。Mao等[7]利用关联分析鉴定到一个抗旱候选基因ZmNAC111, 在干旱胁迫条件下该基因过表达可提高玉米苗期抗旱性。Li等[8]通过全基因组关联分析发掘出75个玉米根系结构关键基因, 并利用过表达转基因实验验证了其中关键基因ZmCIPK3的生物学功能, 其过表达通过提高水分胁迫条件下种子根长度提高玉米苗期抗旱性。此外, Sun等[9]利用多组学和基因编辑策略, 克隆到抗旱基因DRESH8, 通过基因编辑手段获得缺乏DRESH8的玉米植株, 发现基因编辑材料比携带DRESH8的玉米植株更耐旱, DRESH8通过产生的siRNA介导下游靶标mRNA的切割来调控植物的耐旱性。

玉米在驯化过程中由于遗传瓶颈效应和选择效应丢失了许多优异基因或等位基因, 挖掘玉米祖先大刍草中的优良抗旱基因资源对抗旱分子育种具有重要意义。近期研究发现2份完全不同的大刍草, 小颖大刍草亚种(Zea mays ssp. parviglumis)和墨西哥高原大刍草亚种(Zea mays ssp. mexicana)为现代玉米的祖先[10-11]。大刍草具有适应性强、抗逆(特别是抗旱)、抗病、耐瘠薄等优异性状, 是挖掘抗逆、抗病等基因资源的重要研究材料。Liu等[12]利用大刍草构建的定位群体克隆了2个调控玉米叶夹角的重要基因UPA1UPA2, 将大刍草的UPA2等位基因导入到现代玉米中或进行基因编辑, 在密植条件下均可显著提高玉米产量。Feng等[13]利用同源克隆鉴定到一个受ABA诱导的抗旱基因ZmDRO1, 玉米自交系B73中ZmDRO1高表达但受ABA诱导弱, 墨西哥大刍草中ZmDRO1低表达但受ABA诱导强, 表明大刍草比玉米自交系B73具有更强的避旱能力与ZmDRO1对干旱/ABA的应答相关。Wang等[14]利用墨西哥大刍草与PH4CV创制的BC2F6群体, 开展玉米种子根数目的QTL定位, 鉴定出种子根数目的候选基因, 为玉米根系结构改良提供了重要的基因资源。

目前利用大刍草开展玉米抗旱基因资源挖掘鲜有报道。本课题组前期利用墨西哥大刍草与PH4CV构建了一套BC2F6群体, 开展了基于重测序的基因型鉴定。在此基础上, 本研究开展群体抗旱性初步鉴定, 对筛选出的抗旱渗入系TP180开展抗旱性精准鉴定。开展渗入系TP180和轮回亲本PH4CV的转录组测序, 结合渗入系TP180的全基因组导入区段分析, 发掘大刍草导入区段的差异表达抗旱候选基因, 为玉米抗旱性遗传改良提供关键基因资源和优异种质。

1 材料与方法

1.1 材料和基因型数据

基于墨西哥大刍草(CIMMYT登录号为249743)和玉米自交系PH4CV构建的BC2F6群体, 包含206份大刍草渗入系。本实验室前期利用重测序的方法完成了该群体的基因型鉴定, 过滤后, 获得138,208个高质量SNPs用于鉴定每份渗入系的全基因组导入区段[14]

1.2 抗旱性鉴定

为了鉴定BC2F6群体的苗期抗旱性, 在中国农业科学院(北京)的温室(24°C, 14 h光照/10 h暗光周期)中进行了盆栽试验。对206份材料进行抗旱性初步鉴定, 将每份材料种在白色大屉(66 cm × 46 cm × 16 cm, 长×宽×深)中, 以PH4CV为对照观察抗旱表型。后续对渗入系TP180进行抗旱性精准鉴定。将渗入系TP180和PH4CV分别播种在塑料屉(48 cm × 40 cm × 16 cm, 长×宽×深)中, 待其生长至二叶一心时, 为正常水分处理的材料, 后期不再进行浇水(干旱处理), 干旱处理18 d后复水, 复水7 d后, 统计渗入系TP180和野生型PH4CV的存活率。试验重复3次, 结果取平均值。

1.3 转录组测序

在玉米幼苗生长至三叶一心, 作为正常水分处理, 后期不再进行浇水(干旱处理), 分别在正常条件下, 干旱处理15 d和18 d时取第3片叶片进行RNA提取。测试样品的RNA提取和cDNA文库构建均由北京贝瑞和康生物技术有限公司按照标准程序进行。所有cDNA文库均在Illumina NovaSeq 6000平台上进行测序。获得测序数据后首先进行基本数据质量控制, 然后将这些高质量的序列比对到参考基因组, 并进行基因表达水平分析。

使用高通量RNA测序(RNA-seq)来鉴定不同处理下PH4CV与TP180中差异表达基因(DEGs)。利用DESeq2进行基因差异表达分析, 通过FPKM (Fragments per kilobase per million mapped fragments)值对基因的表达水平进行定量。对差异显著基因进行了Gene Ontology (GO)富集分析, 应用超几何检验进行富集分析, 通过计算得到 P值, 通过校正之后, 以FDR<0.05为阈值, 找出差异表达基因中显著性富集的GO条目, 从而确定差异表达基因的生物学功能。

1.4 抗旱候选基因的RT-PCR

取0.1 g玉米幼嫩叶片, 参照南京诺唯赞生物科技股份有限公司FastPure Universal Plant Total RNA Isolation Kit试剂盒(RC441)说明书进行总 RNA提取, 反转为cDNA。RT-qPCR参照Taq Pro Universal SYBR qPCR SuperMix (Q712)说明书进行。RT-qPCR反应程序如下: 95℃ 预变性 30 s; 95℃ 10 s, 60℃ 30 s, 40 个循环, 采用 2-ΔΔCt计算基因相对表达量。其中玉米内参基因为GAPDH, 引物序列见表1

表1   本研究所使用的引物信息表

Table 1  Primers used in this study

引物名称Primer name引物序列Primer sequence (5'-3')
GAPDH-FCCCTTCATCACCACGGACTAC
GAPDH-RAACCTTCTTGGCACCACCCT
ReTIFY9-FCAGCGGAACGTGCAGAAACA
ReTIFY9-R2GCCTTGCGCTTCTCCATGAAC
ReEreb24-FCACCACTGCTACGCCAATG
ReEreb24-RATTGAAAGCGACCGGGGTG

新窗口打开| 下载CSV


2 结果与分析

2.1 渗入系的抗旱性鉴定评价

基于墨西哥大刍草和玉米自交系PH4CV构建的BC2F6群体, 通过群体抗旱性鉴定, 初步筛选出TP180、TP005、TP032、TP118等4个大刍草渗入系材料。进一步对其中的渗入系TP180开展抗旱性精准鉴定, 发现在正常水分条件下渗入系TP180和轮回亲本PH4CV之间没有明显的差别; 干旱胁迫后, 渗入系TP180较PH4CV萎蔫程度更小, 复水后TP180相较于PH4CV有更好的恢复能力且更容易使叶片恢复到正常形态特征(图1-A~D)。复水7 d后统计渗入系TP180和PH4CV的存活率, PH4CV的存活率只有45%, 而渗入系TP180的存活率达到了93%, 显著高于PH4CV (图1-E), 表明导入大刍草基因组片段的渗入系积极响应干旱胁迫, 可提高玉米的抗旱性。

图1

图1   TP180和PH4CV抗旱性分析与干旱处理存活率分析

A: 正常水分; B: 中度干旱胁迫; C: 重度干旱胁迫; D: 复水; E: 存活率。**表示在P < 0.01水平差异显著。

Fig. 1   Drought tolerance of TP180 and PH4CV with survival rate of drought treatments

A: watered; B: moderate-drought; C: severe-drought; D: re-watered; E: survival rate. ** indicates significant difference at P < 0.01.


2.2 大刍草渗入系TP180的全基因组导入片段分析

基于重测序获得的138,208个高质量SNP, 开展TP180全基因组导入片段分析, 发现墨西哥大刍草基因组导入约14 Mb, 占比0.6%, 在10条染色体均有导入, 其中1号染色体导入区段最多, 10号染色体导入区段最少(图2), 在2号染色体的77.7~79.1 Mb上含有一个1.4 Mb的最大导入区段。

图2

图2   大刍草导入区段分析

Fig. 2   Analysis of imported segments in teosinte


对导入区段内的抗旱相关基因进行分析, 发现多个与玉米抗旱性相关的候选基因。例如, 在1号染色体0.248~0.249 Mb导入区段上, Zm00001d 033066 (hak27)基因编码一种高亲和钾离子转运蛋白, 其在水稻中同源基因为OsHAK27, 其功能与OsHAK1相似。OsHAK1在根系和地上部均受干旱、高盐诱导上调表达, oshak1突变体在营养和生殖生长期均表现对干旱、盐胁迫敏感, 而过量表达OsHAK1可以促进活性氧的清除、增强胁迫响应相关基因的表达, 提高水稻的抗旱、耐盐性[15]。在2号染色体4.443~4.720 Mb导入区段上, Zm00001d 002020基因是S结构域受体样激酶的亚家族成员之一, 其水稻中同源基因在干旱胁迫条件下下调表达[16]。在4号染色体150.9~151.3 Mb导入区段上, Zm00001d051267 (myb166)基因编码MYB转录因子, 据报道myb166在干旱胁迫下重新复水3 d后, 其表达量下调[17]。在5号染色体180.6~181.3 Mb导入区段上, 含有2个转录因子相关基因Zm00001d016950Zm00001d016957Zm00001d016950编码NAC转录因子, 其在水稻中的同源基因OsNAC1是一个抗旱相关基因, 据报道OsFLP通过直接与OsNAC1OsNAC6的启动子区结合, 从而调节应激反应基因的表达水平, 在干旱胁迫反应中发挥积极作用[18]Zm00001d016957 (mads19)编码含有MADS-box的转录因子, 其在拟南芥中同源基因AGL16的缺失突变体可提高抗旱性, AGL16能够结合CYP707A3、AAO3和SDD1启动子中的CArG基序, 并调节其转录, 导致叶片气孔密度和ABA水平的改变, 是一个抗旱性的负调控因子[19]。在7号染色体28.6~29.9 Mb导入区段之间, Zm00001d019354 (vq39)基因编码含有VQ 基序的转录因子, 含有VQ基序的蛋白质在植物的非生物胁迫反应中起着至关重要作用。VQ39对干旱胁迫反应较慢, 在干旱胁迫6 d后其转录水平增加[20]。在8号染色体37.0~37.2 Mb导入区段之间, Zm00001d009118基因编码一种水解酶, 含有通用应激蛋白(USP)结构域, 其拟南芥中同源基因At3g62550在干旱胁迫条件下表达量上调, 受干旱胁迫诱导表达[21]

2.3 转录组数据分析

为了探究大刍草渗入系响应干旱胁迫的分子机制, 在正常水分处理(WW)、干旱胁迫15 d (中度胁迫, MD)和18 d (重度胁迫, SD)时, 对渗入系TP180和轮回亲本PH4CV进行转录组测序, 筛选不同处理条件下TP180和PH4CV之间差异表达基因(DEGs), 并挖掘抗旱候选基因。

TP180和PH4CV之间共鉴定出2307个差异表达基因(图3-A)。随着干旱胁迫处理时间的延长, MD组、SD组相较于WW组差异表达基因(DEGs)数量逐渐增加(图3-B)。在正常水分条件下, 相较于PH4CV, 渗入系TP180中有90个上调差异表达基因和42个下调差异表达基因。在中度胁迫条件下, 相较于PH4CV, 渗入系TP180中有64个上调差异表达基因和262个下调差异表达基因。在重度胁迫条件下, 相较于PH4CV, 渗入系TP180中有1291个上调差异表达基因和726个下调差异表达基因。在3种处理条件下, 共有18个基因均差异表达; 相较于正常条件下, 中度和重度胁迫条件下有122个重叠的差异表达基因。

图3

图3   不同处理下差异表达基因数目

A: Venn图描述所有差异表达基因的数量; B: 上调、下调的差异基因总数。WW: 正常水分; MD: 中度干旱胁迫; SD: 重度干旱胁迫。

Fig. 3   Number of differentially expressed genes under different treatments

A: Venn diagram of all differentially expressed genes; B: total number of up- and down-regulated differential genes. WW: normal water (watered); MD: moderate-drought stress (moderate-drought); SD: severe-drought stress (severe-drought)


为了研究差异表达基因的生物学功能, 对不同干旱胁迫条件下的差异表达基因进行Gene Ontology (GO)富集分析。在中度干旱胁迫条件下, GO分析发现上调表达的基因在生物过程中聚集在半胱氨酸代谢过程(GO:0006534)、磷酸烯醇丙酮酸转运(GO:0015714)等(图4-A), 下调表达的基因在生物过程中聚集在药物代谢过程(GO:0042737)、核小体组装过程(GO:0034728)等(图4-B)。在重度干旱胁迫条件下, 结果显示(图4-C), 上调表达的基因在生物过程中聚集在光合作用(GO:0015979), 氧化还原过程(GO:0055114)等。下调表达的基因在生物过程中聚集在碳水化合物代谢过程(GO:0005975), 氧化酸代谢过程(GO:0043436)等(图4-D)。

图4

图4   不同处理下差异表达基因GO富集

A: 中度干旱胁迫上调表达基因; B: 中度干旱胁迫下调表达基因; C: 重度干旱胁迫上调表达基因; D: 重度干旱胁迫中度干旱胁迫下调表达基因。

Fig. 4   GO enrichment of differentially expressed genes under different treatments

A: up-regulated differential genes of moderate-drought; B: down-regulated differential genes of moderate-drought; C: up-regulated differential genes of severe-drought; D: down-regulated differential genes of severe-drought.


对差异表达基因中与抗旱性相关基因进行分析, 发现多个植物激素信号转导途径的相关基因。植物激素在植物生长发育中起着重要作用, 本研究中鉴定到24个植物激素相关的差异表达基因, 其中7个基因参与生长素途径, 3个基因为生长素响应基因GH3家族, 包括Zm00001d006753 (aas2), Zm00001d 043350 (aas7)均下调表达, Zm00001d007395 (aas3)上调表达。4个基因注释为生长素响应蛋白(Aux/IAA), Zm00001d037691 (bif4), Zm00001d 037774 (iaa28)上调表达, Zm00001d038784 (iaa30), Zm00001d041418 (iaa11)呈下调表达。5个基因参与茉莉酸(JA)途径, 4个基因被注释为茉莉酸ZIM结构域蛋白, 包括Zm00001d014253 (zim10)、Zm00001d 020614 (zim28)、Zm00001d033050 (zim18)、Zm00001d 048263 (zim4)均呈上调表达, 一个茉莉酸氨基合成酶Zm00001d008957 (aas10)也呈上调表达。油菜素内酯(BR)途径涉及1个基因, Zm00001d001779 (ZmCASP2)上调表达。

不同干旱胁迫条件下差异表达基因中, 包含3个抗旱相关基因Zm00001d034160 (ZmGLK44)、Zm00001d047993 (ZmSRO1d)、Zm00001d027874 (ZmNF-YA1)。在胁迫程度不断增强条件下, ZmGLK44在渗入系TP180中基因表达下调, 显著低于轮回亲本PH4CV (图5-A)。ZmGLK44编码Golden-like 2类转录因子, ZmGLK44直接结合并激活色氨酸合酶TSB2, 调控玉米的色氨酸合成途径, 维持干旱下色氨酸更高水平的合成, 在干旱处理条件下, 过表达植株光合效率、叶绿素水平和存活率均显著高于野生型[22]。在重度胁迫下, ZmSRO1d在渗入系TP180中基因表达水平下调(图5-B), ZmSRO1d编码一个Similar Radical-induced Cell Death 1 One蛋白, 其抗旱优异等位基因型蛋白ZmSRO1d-R能与Zm14-3-3.1互作并定位到质膜对ZmRBOHC进行ADP核糖基化修饰导致保卫细胞内的ROS产生增加, 促进气孔关闭, 增强玉米的抗旱性[23]。在重度胁迫下, ZmNF-YA1在渗入系中基因表达水平上调, 表达量显著高于PH4CV (图5-C), ZmNF-YA1编码CBF类转录因子, 是植物干旱和盐胁迫响应的正调节因子, 该转录因子对参与玉米根系发育调控, 过表达ZmNF-YA1提高了玉米的干旱和盐胁迫耐受性和促进根系发育[24]

图5

图5   差异表达中已知抗旱基因不同处理下表达量

FPKM代表差异显著基因的表达水平, WW代表正常水分(watered)条件下基因表达量, MD代表中度干旱胁迫(moderate-drought)条件下基因表达量, SD代表重度干旱胁迫(severe-drought)条件下基因表达量。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无差异显著性。

Fig. 5   Relative expression profile of known drought resistance genes in differential expression under different treatments

FPKM: the expression levels of genes with significant differences; WW: gene expression under normal water (watered) conditions; MD: gene expression under moderate drought stress (moderate-drought) conditions; SD: gene expression under severe drought stress (severe-drought) conditions. * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, and ns indicates no significance.


2.4 整合大刍草导入片段与差异表达基因的抗旱候选基因挖掘

整合大刍草全基因组导入区段与不同胁迫条件下差异表达基因分析, 在渗入系TP180导入区段内鉴定出2个差异表达基因Zm00001d033050Zm00001d002025Zm00001d033050 (ZmTIFY9), 定位在导入区段1号染色体248.4~249.7 Mb区间内。在正常水分条件下表达量无显著差异, 在干旱中度和重度胁迫下相较于PH4CV, 该基因在TP180的表达显著增加(图6-A)。进一步通过RT-PCR实验确认Zm00001d033050在胁迫条件下表达量明显增加(图6-C)。ZmTIFY9编码含有zim结构域的转录因子, 具有高度保守的28个氨基酸TIFY基序(TIF[F/Y] XG), 参与茉莉酸信号传导, 已有报道茉莉酸信号途径参与了植物对干旱胁迫的响应过程[25]。其在水稻中同源基因在干旱胁迫下诱导表达。Zm00001d 002025 (ereb24), 定位在导入区段2号染色体4.44~ 4.72 Mb区间内, 在正常水分条件下表达量无显著差异, 在中度和重度干旱胁迫下相较于PH4CV, 该基因在TP180的表达显著升高(图6-B)。进一步通过RT-PCR实验确认Zm00001d002025在胁迫条件下表达量明显增加(图6-D)。Zm00001d002025编码AP2/ ERFs类转录因子, 据报道AP2/ERF家族中的DREB和ERF在调节干旱中有重要作用。其中, CBF/DREB与DRE顺式作用元件结合, 激活非生物胁迫应答基因, 对提高植物对干旱的抗逆性有重要作用[26]

图6

图6   候选抗旱基因不同处理下基因表达水平

A~B图为转录组数据, C~D图为RT-PCR实验结果, FPKM代表差异显著基因的表达量, Relative expression level为RT-PCR实验得到的基因表达量, WW代表正常水分(watered)条件下基因表达量, MD代表中度干旱胁迫(moderate-drought)条件下基因表达量, SD代表重度干旱胁迫(severe-drought)条件下基因表达量。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无差异显著性。

Fig. 6   Gene expression levels of candidate drought-resistant genes under different treatments

A-B: the transcriptome data; C-D: the results of RT-PCR experiments; FPKM: the relative expression of genes with significant differences; Relative expression level is the relative expression level of genes by RT-PCR. WW: the relative expression of genes under normal watered conditions (watered); MD: the relative expression level of genes under moderate drought stress (moderate-drought); SD: the relative expression level of genes under severe drought stress (severe-drought); * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, and ns indicates no significance.


3 讨论

玉米是我国重要的粮食作物, 而干旱胁迫严重影响着玉米的产量及品质。因此, 挖掘抗旱基因, 培育抗旱品种对减少玉米因干旱而产生的损失是十分必要的[27]。由于玉米在不断地驯化过程中丢失了许多优异等位基因, 因此找寻玉米祖先大刍草中的优良抗旱等位基因对抗旱分子育种具有重要意义。大刍草中所具有的野生等位基因在现代育种中具有极大的应用价值[28], 对其进行研究与利用将有助于拓宽玉米优异基因资源。

本研究利用墨西哥大刍草和轮回亲本PH4CV构建的BC2F6群体, 通过群体抗旱性初步鉴定和初筛出的材料抗旱性精准鉴定, 筛选出抗旱性比较稳定的渗入系材料TP180。为了探究大刍草导入片段对抗旱性的影响, 开展TP180全基因组导入片段分析, 发现墨西哥大刍草基因组导入约14 Mb, 占比0.6%, 基于重测序获得的基因型数据, 统计了TP180全基因组上导入大刍草基因组的杂合度仅为0.137%, 可能对抗旱性较小的影响。为了探究导入大刍草基因组的渗入系材料对干旱胁迫响应的分子机制, 在正常水分条件、干旱胁迫15 d和18 d时对渗入系TP180和PH4CV进行转录组分析。对差异表达基因进行分析, 发现多个植物激素信号转导的基因, 7个基因参与生长素途径, 5个基因参与茉莉酸(JA)途径, 以及1个基因涉及油菜素内酯(BR)途径。植物激素在平衡生长和防御方面发挥着重要作用, 其中茉莉酸盐(JA)是植物对生物和非生物胁迫(如伤害、病原体感染、干旱和盐度胁迫)反应的关键调节因子[29]。番茄中茉莉酸信号途径中的转录因子MYC2通过抑制SlPP2C1和SlRR26, 干旱胁迫下JA在调节气孔关闭中起着关键作用。SlRR26的过表达株系对干旱胁迫的耐受性显著下降, 而其突变株系对干旱胁迫的耐受性则显著增强。SlRR26负调控RobhB介导的活性氧(ROS)累积, 使得气孔无法关闭[25]

转录因子是DNA结合蛋白, 通过与目标基因启动子区域的顺式元件结合来调节基因表达, 许多转录因子家族基因被发现通过调控下游胁迫反应基因在植物干旱胁迫反应中发挥着关键作用[30-31]。玉米NAC转录因子ZmNAC49的表达受到干旱胁迫的快速和强烈诱导, 过表达增强了玉米的抗逆性。过量表达也显著降低了玉米的蒸腾速率、气孔导度和气孔密度。ZmNAC49可以直接与ZmMUTE的启动子结合并抑制其表达降低气孔密度, 从而增强玉米的耐旱性[32]。本研究在大刍草导入区段内分析找到Zm00001d033050 (ZmTIFY9)和Zm00001d002025 (ereb24)两个与抗旱相关的候选基因。ZmTIFY9编码含有zim结构域的转录因子, 具有高度保守的28个氨基酸TIFY基序(TIF[F/Y]XG), 参与茉莉酸信号传导。据报道干旱胁迫对玉米自交系Han21和Ye478的ZmTIFY4ZmTIFY5ZmTIFY8ZmTIFY26ZmTIFY28有诱导作用, 对ZmTIFY16ZmTIFY13ZmTIFY24ZmTIFY27ZmTIFY18ZmTIFY30有抑制作用[33]ZmTIFY9其在水稻中的同源基因OsTIFY11e在干旱胁迫下诱导表达, 同一家族成员OsTIFY11a的过表达显著提高了转基因水稻品系对盐胁迫和脱水胁迫的耐受性[34]Zm00001d002025 (ereb24)编码AP2/ERFs转录因子, 其家族基因ZmEREBP60是干旱胁迫下的正调控因子。ZmEREBP60的表达是由玉米根、胚芽鞘和叶片中的干旱强烈诱导的, 其亚细胞定位到细胞核中[35]ZmEREBP60的过表达株系通过减少H2O2的积累和丙二醛含量来提高对干旱胁迫的耐受性。ZmEREBP60转基因系的转录组分析表明, 参与H2O2分解代谢、缺水反应和脱落酸信号通路的基因表达受到不同的调节[36]。本研究通过鉴定大刍草导入区段内与抗旱有关的差异表达基因, 以期从大刍草内找到玉米中已经丢失的优良的抗旱基因, 为玉米的抗旱遗传改良提供优异基因资源。

4 结论

本研究筛选出一个大刍草抗旱渗入系TP180, 对其开展抗旱性精准鉴定, 发现导入大刍草基因组片段的渗入系积极响应干旱胁迫, 可提高玉米的抗旱性。同时开展渗入系TP180和轮回亲本PH4CV的转录组测序, 结合渗入系TP180的全基因组导入区段分析, 发掘出大刍草导入区段内差异表达抗旱候选基因Zm00001d033050 (ZmTIFY9)和Zm00001d 002025 (ereb24)。本研究为利用玉米野生近缘种大刍草, 开展玉米抗旱性分子育种提供了关键基因资源。

参考文献

McMillen M S, Mahama A A, Sibiya J, Lübberstedt T, Suza W P.

Improving drought tolerance in maize: tools and techniques

Front Genet, 2022, 13: 1001001.

[本文引用: 1]

Li P, Zhang Y, Yin S, Zhu P, Pan T, Xu Y, Wang J, Hao D, Fang H, Xu C, Yang Z.

QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes

Front Plant Sci, 2018, 9: 229.

DOI      PMID      [本文引用: 1]

Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problemto improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype-environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM) was associated with the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y.

Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations

BMC Genomics, 2016, 17: 894.

PMID      [本文引用: 1]

Maize requires more water than most other crops; therefore, the water use efficiency of this crop must be improved for maize production under undesirable land and changing environmental conditions.To elucidate the genetic control of drought in maize, we evaluated approximately 5000 inbred lines from 30 linkage-association joint mapping populations under two contrasting water regimes for seven drought-related traits, including yield and anthesis-silking interval (ASI). The joint linkage analysis was conducted to identify 220 quantitative trait loci (QTLs) under well-watered conditions and 169 QTLs under water-stressed conditions. The genome-wide association analysis identified 365 single nucleotide polymorphisms (SNPs) associated with drought-related traits, and these SNPs were located in 354 candidate genes. Fifty-two of these genes showed significant differential expression in the inbred line B73 under the well-watered and water-stressed conditions. In addition, genomic predictions suggested that the moderate-density SNPs obtained through genotyping-by-sequencing were able to make accurate predictions in the nested association mapping population for drought-related traits with moderate-to-high heritability under the water-stressed conditions.The results of the present study provide important information that can be used to understand the genetic basis of drought stress responses and facilitate the use of beneficial alleles for the improvement of drought tolerance in maize.

Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E.

Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize

Proc Natl Acad Sci USA, 2012, 109: 8872-8877.

DOI      PMID      [本文引用: 1]

The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.

Liu S, Qin F.

Genetic dissection of maize drought tolerance for trait improvement

Mol Breed, 2021, 41: 8.

[本文引用: 1]

Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F.

Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings

Nat Genet, 2016, 48: 1233-1241.

[本文引用: 1]

Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L S, Qin F.

A transposable element in a NAC gene is associated with drought tolerance in maize seedlings

Nat Commun, 2015, 6: 8326.

[本文引用: 1]

Li C, Guo J, Wang D, Chen X, Guan H, Li Y, Zhang D, Liu X, He G, Wang T, Li Y.

Genomic insight into changes of root architecture under drought stress in maize

Plant Cell Environ, 2023, 46: 1860-1872.

[本文引用: 1]

Sun X, Xiang Y, Dou N, Zhang H, Pei S, Franco A V, Menon M, Monier B, Ferebee T, Liu T, Liu S, Gao Y, Wang J, Terzaghi W, Yan J, Hearne S, Li L, Li F, Dai M.

The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize

Nat Biotechnol, 2023, 41: 120-127.

[本文引用: 1]

Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes B P, Gui S, Fan X, Harper T K, Kennett D J, Li W, Lu Y, Ding J, Chen Z, Luo J, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S, Wu S, Zhuo L, Xiao Y, Yang X, Stitzer M C, Runcie D, Yan J, Ross-Ibarra J.

Two teosintes made modern maize

Science, 2023, 382: eadg8940.

[本文引用: 1]

Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal J S, Rellán-Álvarez R, Sawers R J H, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, Wei W, Wang Y, Luo Y, Jiang C, Deng M, Jin M, Jian L, Yu Y, Zhang M, Yang X, Hufford M B, Fernie A R, Warburton M L, Ross-Ibarra J, Yan J.

Genome sequencing reveals evidence of adaptive variation in the genus Zea

Nat Genet, 2022, 54: 1736-1745.

DOI      PMID      [本文引用: 1]

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

刘杰, 严建兵.

大刍草稀有等位基因促进玉米密植高产

植物学报, 2019, 54: 554-557.

DOI      [本文引用: 1]

密植是提高作物单位面积产量、促进粮食增产的重要途径之一。叶夹角是影响玉米(Zea mays)密植的关键因子。中国农业大学田丰课题组最近克隆了2个调控玉米叶夹角的数量性状位点(QTL)——UPA1和UPA2, 揭示了这2个位点的功能基因(brd1和ZmRAVL1)通过油菜素内酯(BR)信号通路调控叶夹角。UPA2位于ZmRAVL1上游9.5 kb, 可与DRL1蛋白结合。另一个影响玉米叶夹角的蛋白LG1可以激活ZmRAVL1的表达; DRL1蛋白与LG1蛋白直接互作抑制LG1对ZmRAVL1的激活表达。玉米祖先种大刍草(teosinte)的UPA2位点序列与DRL1蛋白结合能力更强, 导致大刍草ZmRAVL1的表达受到更强的抑制, 下调表达的ZmRAVL1进一步使下游基因brd1的表达下调, 进而降低叶环区的内源BR水平, 导致叶夹角变小。将大刍草的UPA2等位基因导入到玉米中或对玉米中ZmRAVL1进行基因编辑, 在密植条件下均可显著提高玉米产量。上述发现为高产玉米品种的分子育种改良提供了重要理论基础和基因资源。

Liu J, Yan J B.

A teosinte rare allele increases maize plant density and yield

Chin Bull Bot, 2019, 54: 554-557 (in Chinese with English abstract).

[本文引用: 1]

Feng X, Jia L, Cai Y, Guan H, Zheng D, Zhang W, Xiong H, Zhou H, Wen Y, Hu Y, Zhang X, Wang Q, Wu F, Xu J, Lu Y.

ABA- inducible DEEPER ROOTING 1improves adaptation of maize to water deficiency

Plant Biotechnol J, 2022, 20: 2077-2088.

[本文引用: 1]

Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C.

Identification of a new QTL underlying seminal root number in a maize-teosinte population

Front Plant Sci, 2023, 14: 1132017.

[本文引用: 2]

Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q.

OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice

Front Plant Sci, 2017, 8: 1885.

DOI      PMID      [本文引用: 1]

Drought is one of the environmental factors that severely restrict plant distribution and crop production. Recently, we reported that the high-affinity potassium transporter OsHAK1 plays important roles in K acquisition and translocation in rice over low and high K concentration ranges, however, knowledge on the regulatory roles of OsHAK1 in osmotic/drought stress is limited. Here, transcript levels of OsHAK1 were found transiently elevated by water deficit in roots and shoots, consistent with the enhanced GUS activity in transgenic plants under stress. Under drought conditions, OsHAK1 knockout mutants (KO) presented lower tolerance to the stress and displayed stunted growth at both the vegetative and reproductive stages. Phenotypic analysis of OsHAK1 overexpression seedlings (Ox) demonstrated that they present better tolerance to drought stress than wild-type (WT). Compared to WT seedlings, OsHAK1 overexpressors had lower level of lipid peroxidation, higher activities of antioxidant enzymes (POX and CAT) and higher proline accumulation. Furthermore, qPCR analysis revealed that OsHAK1 act as a positive regulator of the expression of stress-responsive genes as well as of two well-known rice channel genes (OsTPKb and OsAKT1) involved in K homeostasis and stress responses in transgenic plants under dehydration. Most important, OsHAK1-Ox plants displayed enhanced drought tolerance at the reproductive stage, resulting in 35% more grain yield than WT under drought conditions, and without exhibiting significant differences under normal growth conditions. Consequently, OsHAK1 can be considered to be used in molecular breeding for improvement of drought tolerance in rice.

Naithani S, Dikeman D, Garg P, Al-Bader N, Jaiswal P.

Beyond gene ontology (GO): using biocuration approach to improve the gene nomenclature and functional annotation of rice S-domain kinase subfamily

PeerJ, 2021, 9: e11052.

[本文引用: 1]

Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C.

Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize

Physiol Mol Biol Plants, 2021, 27: 1295-1309.

[本文引用: 1]

Qu X, Zou J, Wang J, Yang K, Wang X, Le J.

A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC

Int J Mol Sci, 2022, 23: 5873.

[本文引用: 1]

Zhao P X, Miao Z Q, Zhang J, Chen S Y, Liu Q Q, Xiang C B.

Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement

J Exp Bot, 2020, 71: 6092-6106.

[本文引用: 1]

Song W, Zhao H, Zhang X, Lei L, Lai J.

Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

Front Plant Sci, 2016, 6: 1177.

[本文引用: 1]

Isokpehi R D, Simmons S S, Cohly H H, Ekunwe S I, Begonia G B, Ayensu W K.

Identification of drought-responsive universal stress proteins in viridiplantae

Bioinform Biol Insights, 2011, 5: 41-58.

[本文引用: 1]

Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie A R, Yan J, Qin F, Chen W, Brotman Y, Dai M.

Genomic basis underlying the metabolome-mediated drought adaptation of maize

Genome Biol, 2021, 22: 260.

DOI      PMID      [本文引用: 1]

Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive.Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance.Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits.© 2021. The Author(s).

Gao H, Cui J, Liu S, Wang S, Lian Y, Bai Y, Zhu T, Wu H, Wang Y, Yang S, Li X, Zhuang J, Chen L, Gong Z, Qin F.

Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize

Mol Plant, 2022, 15: 1558-1574.

[本文引用: 1]

Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z.

Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize

Plant Phys, 2022, 190: 1506-1525.

[本文引用: 1]

Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S.

Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato

Plant J, 2023, 113: 546-561.

[本文引用: 2]

Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X.

The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance

Plant Cell Rep, 2018, 37: 1049-1060.

DOI      PMID      [本文引用: 1]

We find that the DREB subfamily transcription factor, CmERF053, has a novel function to regulate the development of shoot branching and lateral root in addition to affecting abiotic stress. Dehydration-responsive element binding proteins (DREBs) are important plant transcription factors that regulate various abiotic stresses. Here, we isolated an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor from chrysanthemum (Chrysanthemum morifolium 'Jinba'), CmERF053, the expression of which was rapidly up-regulated by main stem decapitation. Phylogenetic analysis indicated that it belongs to the A-6 group of the DREB subfamily, and the subcellular localization assay confirmed that CmERF053 was a nuclear protein. Overexpression of CmERF053 in Arabidopsis exhibited positive effects of plant lateral organs, which had more shoot branching and lateral roots than did the wild type. We also found that the expression of CmERF053 in axillary buds was induced by exogenous cytokinins. These results suggested that CmERF053 may be involved in cytokinins-related shoot branching pathway. In this study, an altered auxin distribution was observed during root elongation in the seedlings of the overexpression plants. Furthermore, overexpress CmERF053 gene could enhance drought tolerance. Together, these findings indicated that CmERF053 plays crucial roles in regulating shoot branching, lateral root, and drought stress in plant. Moreover, our study provides potential application value for improving plant productivity, ornamental traits, and drought tolerance.

陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉.

玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究

植物遗传资源学报, 2022, 23: 1064-1075.

DOI      [本文引用: 1]

钙调磷酸酶B类互作蛋白激酶CIPK(CBL interacting protein kinases)是植物钙离子信号通路中响应非生物逆境胁迫的重要蛋白激酶之一。本研究以拟南芥和水稻中CIPK家族基因序列信息为基础,利用玉米参考基因组B73和生物信息学分析方法,全基因组范围内鉴定玉米CIPK基因家族成员,分析CIPK家族基因的进化关系、基因结构、基因表达模式和对干旱胁迫的响应。本研究共鉴定出44个玉米CIPK家族基因,并将其分为5个亚家族,每个亚家族有不同的外显子-内含子和UTR的结构特征;基于基因差异表达分析,筛选出5个与抗旱性相关的候选基因ZmCIPK3、ZmCIPK7、ZmCIPK44、ZmCIPK25和ZmCIPK28;进一步的遗传数据表明,干旱胁迫下ZmCIPK3拟南芥转基因株系的存活率明显高于野生型,提高了拟南芥的抗旱性;同时,干旱胁迫下ZmCIPK3拟南芥转基因株系中抗旱性相关生化指标过氧化物酶(POD)、超氧化物歧化酶(SOD)活性显著高于野生型,而丙二醛(MDA)和脯氨酸(Pro)的含量显著低于野生型。本研究在玉米全基因组水平上鉴定了CIPK基因家族成员,分析了其在不同抗旱性材料、不同水分处理下的基因表达模式,明确了ZmCIPK3是一个抗旱性候选基因。

Chen X J, Wang D M, Guan H H, Guo J, Sha X Q, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S, Song Y C, Wang T Y, Li Y, Liu Y H, Li C H.

Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize

J Plant Genet Resour, 2022, 23: 1064-1075 (in Chinese with English abstract).

[本文引用: 1]

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F.

Teosinte ligule allele narrows plant architecture and enhances high-density maize yields

Science, 2019, 365: 658-664.

DOI      PMID      [本文引用: 1]

Increased planting densities have boosted maize yields. Upright plant architecture facilitates dense planting. Here, we cloned () and, two quantitative trait loci conferring upright plant architecture. is controlled by a two-base sequence polymorphism regulating the expression of a B3-domain transcription factor () located 9.5 kilobases downstream. exhibits differential binding by DRL1 (DROOPING LEAF1), and DRL1 physically interacts with LG1 (LIGULELESS1) and represses LG1 activation of regulates (), which underlies, altering endogenous brassinosteroid content and leaf angle. The allele that reduces leaf angle originated from teosinte, the wild ancestor of maize, and has been lost during maize domestication. Introgressing the wild allele into modern hybrids and editing enhance high-density maize yields.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Depuydt S, Hardtke C S.

Hormone signalling crosstalk in plant growth regulation

Curr Biol, 2011, 21: R365-373.

[本文引用: 1]

艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义.

玉米转录因子ZmEREB211对非生物逆境胁迫的应答

作物学报, 2023, 49: 2433-2445.

DOI      [本文引用: 1]

AP2/ERF (APETALA2/ethylene-responsive factor)转录因子是植物中最大的转录因子家族之一, 在调控植物生长发育和响应逆境胁迫等方面起重要作用。探究玉米(Zea mays L.) AP2/ERF家族基因功能将为玉米新种质创制提供重要的基因资源。本研究克隆获得了ZmEREB211 (Gene ID: 103647485)基因, 利用生物信息学分析、实时荧光定量PCR等技术对该基因的基本特性、组织表达特性及响应逆境胁迫表达模式等进行了分析; 对转基因拟南芥株系进行了相应逆境胁迫处理和表型鉴定。结果显示: 该基因只包含1个外显子, cDNA全长为792 bp, 编码263个氨基酸; ZmEREB211蛋白分子量为27.9 kD, 理论等电点为6.01, 具有AP2家族所特有的保守结构域; ZmEREB211基因在玉米根系中的表达量最高, 且在幼根中的表达量高于成熟根中的表达量; 同时该基因在脱水、高盐、干旱和低温等处理条件下均有不同程度的诱导表达。在分别含有不同浓度梯度的NaCl、甘露醇(mannitol)和茉莉酸(jasmonic acid, JA)的1/2 MS培养基上, 转ZmEREB211基因拟南芥株系的根长显著长于野生型。在干旱和高盐处理下, 盆栽转基因拟南芥株系较野生型株系表现出更强的耐受性, 且苗期的绿叶数显著多于野生型, 过氧化物酶(POD)活性和叶绿素含量均显著高于野生型。研究表明ZmEREB211可能参与调控玉米根系生长发育, 对高盐、干旱、渗透等逆境胁迫及JA激素处理均能起到正向的调控作用。本研究为进一步解析ZmEREB211在玉米中的生物学功能提供了重要的参考依据。

Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y.

Response of maize transcriptional factor ZmEREB211 to abiotic stress

Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract).

[本文引用: 1]

王丽平, 王晓钰, 傅竞也, 王强.

玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定

作物学报, 2024, 50: 76-88.

DOI      [本文引用: 1]

玉米生长发育过程中会遭受干旱、高温、高盐及营养元素匮乏等多种非生物胁迫, 导致其产量和品质下降, 造成严重的农业减产。MYB类转录因子在植物中广泛分布, 参与植物生长发育和环境响应, 筛选及鉴定出具有抗逆功能的MYB类转录因子能为玉米抗逆遗传改良提供理论依据。本研究从玉米干旱处理的材料中克隆了一个R2R3-MYB家族转录因子基因ZmMYB12, 其响应自然干旱、ABA及PEG处理, 基因表达被诱导上调。病毒诱导沉默ZmMYB12后的玉米植株对干旱更加敏感, 活性氧积累更多, 根系更小; 复水后ZmMYB12沉默植株存活率更低, 表明ZmMYB12是干旱正调控因子。进一步构建ZmMYB12稳定过表达拟南芥, 干旱处理后ZmMYB12过表达株系活性氧积累更少, 侧根更多, 抗旱能力增强。同时, 发现ZmMYB12过表达拟南芥在低磷胁迫下侧根数量更多, 根系酸化程度增加, 叶绿素及花青素含量更多, 体内无机磷含量高于野生型, 表明ZmMYB12参与到低磷胁迫过程中, 并且提高了植株对磷元素的吸收及利用率。研究表明ZmMYB12调控干旱抗性并响应低磷胁迫, 为作物抗旱及耐低磷育种提供了一个良好的基因资源。

Wang L P, Wang X Y, Fu J Y, Wang Q.

Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants

Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract).

[本文引用: 1]

Xiang Y, Sun X, Bian X, Wei T, Han T, Yan J, Zhang A.

The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize

J Exp Bot, 2021, 72: 1399-1410.

DOI      PMID      [本文引用: 1]

Drought stress severely limits the growth, development, and productivity of crops, and therefore understanding the mechanisms by which plants respond to drought is crucial. In this study, we cloned a maize NAC transcription factor, ZmNAC49, and identified its function in response to drought stress. We found that ZmNAC49 is localized in the nucleus and has transcriptional activation activity. ZmNAC49 expression is rapidly and strongly induced by drought stress, and overexpression enhances stress tolerance in maize. Overexpression also significant decreases the transpiration rate, stomatal conductance, and stomatal density in maize. Detailed study showed that ZmNAC49 overexpression affects the expression of genes related to stomatal development, namely ZmTMM, ZmSDD1, ZmMUTE, and ZmFAMA. In addition, we found that ZmNAC49 can directly bind to the promoter of ZmMUTE and suppress its expression. Taken together, our results show that the transcription factor ZmNAC49 represses ZmMUTE expression, reduces stomatal density, and thereby enhances drought tolerance in maize.© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Zhang Z, Li X, Yu R, Han M, Wu Z.

Isolation, structural analysis, and expression characteristics of the maize TIFY gene family

Mol Genet Genomics, 2015, 290: 1849-1858.

DOI      PMID      [本文引用: 1]

TIFY, previously known as ZIM, comprises a plant-specific family annotated as transcription factors that might play important roles in stress response. Despite TIFY proteins have been reported in Arabidopsis and rice, a comprehensive and systematic survey of ZmTIFY genes has not yet been conducted. To investigate the functions of ZmTIFY genes in this family, we isolated and characterized 30 ZmTIFY (1 TIFY, 3 ZML, and 26 JAZ) genes in an analysis of the maize (Zea mays L.) genome in this study. The 30 ZmTIFY genes were distributed over eight chromosomes. Multiple alignment and motif display results indicated that all ZmTIFY proteins share two conserved TIFY and Jas domains. Phylogenetic analysis revealed that the ZmTIFY family could be divided into two groups. Putative cis-elements, involved in abiotic stress response, phytohormones, pollen grain, and seed development, were detected in the promoters of maize TIFY genes. Microarray data showed that the ZmTIFY genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmTIFY4, 5, 8, 26, and 28 were induced, while ZmTIFY16, 13, 24, 27, 18, and 30 were suppressed, by drought stress in the maize inbred lines Han21 and Ye478. ZmTIFY1, 19, and 28 were upregulated after infection by three pathogens, whereas ZmTIFY4, 13, 21, 23, 24, and 26 were suppressed. These results indicate that the ZmTIFY family may have vital roles in response to abiotic and biotic stresses. The data presented in this work provide vital clues for further investigating the functions of the genes in the ZmTIFY family.

Ye H, Du H, Tang N, Li X, Xiong L.

Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice

Plant Mol Biol, 2009, 71: 291-305.

DOI      PMID      [本文引用: 1]

The TIFY family is a novel plant-specific gene family involved in the regulation of diverse plant-specific biologic processes, such as development and responses to phytohormones, in Arabidopsis. However, there is limited information about this family in monocot species. This report identifies 20 TIFY genes in rice, the model monocot species. Sequence analysis indicated that rice TIFY proteins have conserved motifs beyond the TIFY domain as was previously shown in Arabidopsis. On the basis of their protein structures, members of the TIFY family can be divided into two groups. Transcript level analysis of OsTIFY genes in tissues and organs revealed different tempo-spatial expression patterns, suggesting that expression and function vary by stage of plant growth and development. Most of the OsTIFY genes were predominantly expressed in leaf. Nine OsTIFY genes were responsive to jasmonic acid and wounding treatments. Interestingly, almost all the OsTIFY genes were responsive to one or more abiotic stresses including drought, salinity, and low temperature. Over-expression of OsTIFY11a, one of the stress-inducible genes, resulted in significantly increased tolerance to salt and dehydration stresses. These results suggest that the OsTIFY family may have important roles in response to abiotic stresses. The data presented in this report provide important clues for further elucidating the functions of the genes in the OsTIFY family.

Qi H, Liang K, Ke Y, Wang J, Yang P, Yu F, Qiu F.

Advances of apetala2/ethylene response factors in regulating development and stress response in maize

Int J Mol Sci, 2023, 24: 5416.

[本文引用: 1]

Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H.

Overexpression of ZmEREBP60 enhances drought tolerance in maize

J Plant Physiol, 2022, 275: 153763.

[本文引用: 1]

/