欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1896-1906.doi: 10.3724/SP.J.1006.2024.43007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于大刍草渗入系的玉米抗旱优异等位基因挖掘

刘爽(), 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉()   

  1. 作物基因资源与育种全国重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2024-01-24 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-22
  • 通讯作者: * 李春辉, E-mail: lichunhui@caas.cn
  • 作者简介:E-mail: 1971556590@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-03);中国农业科学院科技创新工程项目(CAAS-ZDRW202004)

Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte

LIU Shuang(), LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui()   

  1. State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-01-24 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-22
  • Contact: * E-mail: lichunhui@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-03);Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202004)

摘要:

干旱是影响玉米生产的主要非生物胁迫之一。为了挖掘玉米优异抗旱基因, 本研究基于墨西哥大刍草和玉米自交系PH4CV构建的BC2F6群体, 通过苗期抗旱性初步鉴定, 筛选出抗旱性强的渗入系TP180。干旱胁迫后发现渗入系TP180较轮回亲本PH4CV萎蔫程度更小, 并且复水后存活率显著高于PH4CV。全基因组基因型鉴定发现, 渗入系TP180含有0.6%的墨西哥大刍草导入。通过开展TP180和PH4CV不同水分条件下的转录组测序, 在渗入系TP180和PH4CV之间共鉴定了 2307个差异表达基因, 不同胁迫重叠差异表达基因共122个, 这些基因涉及生长素途径, 茉莉酸途径等, 包含多个转录因子。整合差异表达基因和含大刍草导入区段分析, 鉴定出2个抗旱候选基因Zm00001d033050Zm00001d002025, 并进一步开展了RT-PCR分析。本研究为挖掘大刍草中抗旱基因资源提供了重要材料和信息基础。

关键词: 玉米, 大刍草, 渗入系, 抗旱, 转录组分析

Abstract:

Drought is one of the major abiotic stresses affecting maize production. In order to explore new genes for drought tolerance in maize, the BC2F6 population constructed on the basis of teosinte and PH4CV was screened for the drought-tolerant introgression lines TP180 through the preliminary identification of drought tolerance at seedling stage. After drought stress, the TP180 was less wilting than its recurrent parent PH4CV, and the survival rate of TP180 was significantly higher than PH4CV after rehydration. Genome-wide genotypic identification revealed that introgression line TP180 contained 0.6% of the teosinte genome. By transcriptomic analysis of TP180 and PH4CV under different water conditions, a total of 2307 differentially expressed genes were identified between TP180 and PH4CV, and 122 of the differentially expressed genes were identified under both two drought stresses conditions. These genes were related to the growth hormone pathway, jasmonic acid pathway, etc., and contained multiple transcription factors. Integrating the differentially expressed genes and the analysis of introgression region containing the teosinte genome, two drought-resistant candidate genes (Zm00001d033050 and Zm00001d002025) were identified and further validated by RT-PCR. This study provides an important germplasm and information for mining drought-resistant gene of the teosinte.

Key words: maize, teosinte, introgression line, drought tolerance, transcriptomic analysis

表1

本研究所使用的引物信息表"

引物名称Primer name 引物序列Primer sequence (5'-3')
GAPDH-F CCCTTCATCACCACGGACTAC
GAPDH-R AACCTTCTTGGCACCACCCT
ReTIFY9-F CAGCGGAACGTGCAGAAACA
ReTIFY9-R2 GCCTTGCGCTTCTCCATGAAC
ReEreb24-F CACCACTGCTACGCCAATG
ReEreb24-R ATTGAAAGCGACCGGGGTG

图1

TP180和PH4CV抗旱性分析与干旱处理存活率分析 A: 正常水分; B: 中度干旱胁迫; C: 重度干旱胁迫; D: 复水; E: 存活率。**表示在P < 0.01水平差异显著。"

图2

大刍草导入区段分析"

图3

不同处理下差异表达基因数目 A: Venn图描述所有差异表达基因的数量; B: 上调、下调的差异基因总数。WW: 正常水分; MD: 中度干旱胁迫; SD: 重度干旱胁迫。"

图4

不同处理下差异表达基因GO富集 A: 中度干旱胁迫上调表达基因; B: 中度干旱胁迫下调表达基因; C: 重度干旱胁迫上调表达基因; D: 重度干旱胁迫中度干旱胁迫下调表达基因。"

图5

差异表达中已知抗旱基因不同处理下表达量 FPKM代表差异显著基因的表达水平, WW代表正常水分(watered)条件下基因表达量, MD代表中度干旱胁迫(moderate-drought)条件下基因表达量, SD代表重度干旱胁迫(severe-drought)条件下基因表达量。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无差异显著性。"

图6

候选抗旱基因不同处理下基因表达水平 A~B图为转录组数据, C~D图为RT-PCR实验结果, FPKM代表差异显著基因的表达量, Relative expression level为RT-PCR实验得到的基因表达量, WW代表正常水分(watered)条件下基因表达量, MD代表中度干旱胁迫(moderate-drought)条件下基因表达量, SD代表重度干旱胁迫(severe-drought)条件下基因表达量。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无差异显著性。"

[1] McMillen M S, Mahama A A, Sibiya J, Lübberstedt T, Suza W P. Improving drought tolerance in maize: tools and techniques. Front Genet, 2022, 13: 1001001.
[2] Li P, Zhang Y, Yin S, Zhu P, Pan T, Xu Y, Wang J, Hao D, Fang H, Xu C, Yang Z. QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes. Front Plant Sci, 2018, 9: 229.
doi: 10.3389/fpls.2018.00229 pmid: 29527220
[3] Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
pmid: 27825295
[4] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA, 2012, 109: 8872-8877.
doi: 10.1073/pnas.1120813109 pmid: 22615396
[5] Liu S, Qin F. Genetic dissection of maize drought tolerance for trait improvement. Mol Breed, 2021, 41: 8.
[6] Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet, 2016, 48: 1233-1241.
[7] Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L S, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 2015, 6: 8326.
[8] Li C, Guo J, Wang D, Chen X, Guan H, Li Y, Zhang D, Liu X, He G, Wang T, Li Y. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ, 2023, 46: 1860-1872.
[9] Sun X, Xiang Y, Dou N, Zhang H, Pei S, Franco A V, Menon M, Monier B, Ferebee T, Liu T, Liu S, Gao Y, Wang J, Terzaghi W, Yan J, Hearne S, Li L, Li F, Dai M. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat Biotechnol, 2023, 41: 120-127.
[10] Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes B P, Gui S, Fan X, Harper T K, Kennett D J, Li W, Lu Y, Ding J, Chen Z, Luo J, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S, Wu S, Zhuo L, Xiao Y, Yang X, Stitzer M C, Runcie D, Yan J, Ross-Ibarra J. Two teosintes made modern maize. Science, 2023, 382: eadg8940.
[11] Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal J S, Rellán-Álvarez R, Sawers R J H, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, Wei W, Wang Y, Luo Y, Jiang C, Deng M, Jin M, Jian L, Yu Y, Zhang M, Yang X, Hufford M B, Fernie A R, Warburton M L, Ross-Ibarra J, Yan J. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat Genet, 2022, 54: 1736-1745.
doi: 10.1038/s41588-022-01184-y pmid: 36266506
[12] 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产. 植物学报, 2019, 54: 554-557.
doi: 10.11983/CBB19119
Liu J, Yan J B. A teosinte rare allele increases maize plant density and yield. Chin Bull Bot, 2019, 54: 554-557 (in Chinese with English abstract).
[13] Feng X, Jia L, Cai Y, Guan H, Zheng D, Zhang W, Xiong H, Zhou H, Wen Y, Hu Y, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ABA- inducible DEEPER ROOTING 1improves adaptation of maize to water deficiency. Plant Biotechnol J, 2022, 20: 2077-2088.
[14] Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C. Identification of a new QTL underlying seminal root number in a maize-teosinte population. Front Plant Sci, 2023, 14: 1132017.
[15] Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci, 2017, 8: 1885.
doi: 10.3389/fpls.2017.01885 pmid: 29163608
[16] Naithani S, Dikeman D, Garg P, Al-Bader N, Jaiswal P. Beyond gene ontology (GO): using biocuration approach to improve the gene nomenclature and functional annotation of rice S-domain kinase subfamily. PeerJ, 2021, 9: e11052.
[17] Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants, 2021, 27: 1295-1309.
[18] Qu X, Zou J, Wang J, Yang K, Wang X, Le J. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. Int J Mol Sci, 2022, 23: 5873.
[19] Zhao P X, Miao Z Q, Zhang J, Chen S Y, Liu Q Q, Xiang C B. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. J Exp Bot, 2020, 71: 6092-6106.
[20] Song W, Zhao H, Zhang X, Lei L, Lai J. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Front Plant Sci, 2016, 6: 1177.
[21] Isokpehi R D, Simmons S S, Cohly H H, Ekunwe S I, Begonia G B, Ayensu W K. Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights, 2011, 5: 41-58.
[22] Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie A R, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol, 2021, 22: 260.
doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[23] Gao H, Cui J, Liu S, Wang S, Lian Y, Bai Y, Zhu T, Wu H, Wang Y, Yang S, Li X, Zhuang J, Chen L, Gong Z, Qin F. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol Plant, 2022, 15: 1558-1574.
[24] Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z. Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. Plant Phys, 2022, 190: 1506-1525.
[25] Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. Plant J, 2023, 113: 546-561.
[26] Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep, 2018, 37: 1049-1060.
doi: 10.1007/s00299-018-2290-9 pmid: 29687169
[27] 陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉. 玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报, 2022, 23: 1064-1075.
doi: 10.13430/j.cnki.jpgr.20220107006
Chen X J, Wang D M, Guan H H, Guo J, Sha X Q, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S, Song Y C, Wang T Y, Li Y, Liu Y H, Li C H. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. J Plant Genet Resour, 2022, 23: 1064-1075 (in Chinese with English abstract).
[28] Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019, 365: 658-664.
doi: 10.1126/science.aax5482 pmid: 31416957
[29] Depuydt S, Hardtke C S. Hormone signalling crosstalk in plant growth regulation. Curr Biol, 2011, 21: R365-373.
[30] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答. 作物学报, 2023, 49: 2433-2445.
doi: 10.3724/SP.J.1006.2023.23071
Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmEREB211 to abiotic stress. Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract).
[31] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract).
[32] Xiang Y, Sun X, Bian X, Wei T, Han T, Yan J, Zhang A. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J Exp Bot, 2021, 72: 1399-1410.
doi: 10.1093/jxb/eraa507 pmid: 33130877
[33] Zhang Z, Li X, Yu R, Han M, Wu Z. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Mol Genet Genomics, 2015, 290: 1849-1858.
doi: 10.1007/s00438-015-1042-6 pmid: 25862669
[34] Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 2009, 71: 291-305.
doi: 10.1007/s11103-009-9524-8 pmid: 19618278
[35] Qi H, Liang K, Ke Y, Wang J, Yang P, Yu F, Qiu F. Advances of apetala2/ethylene response factors in regulating development and stress response in maize. Int J Mol Sci, 2023, 24: 5416.
[36] Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[4] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[5] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[6] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[7] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[8] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[9] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[10] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[11] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[12] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[13] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[14] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[15] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施永泰;朱睦元. 中国江、浙地区栽培大麦遗传资源的RAPD研究[J]. 作物学报, 2004, 30(03): 258 -265 .
[2] 杜永;王艳;王学红;孙乃立;杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析[J]. 作物学报, 2007, 33(07): 1079 -1085 .
[3] 贺立源;徐尚忠;李建生. 玉米自交系苗期耐酸的生物学和营养学特性[J]. 作物学报, 2000, 26(02): 205 -209 .
[4] 宋开山;张柏;李方;段洪涛;王宗明. 玉米叶绿素含量的高光谱估算模型研究[J]. 作物学报, 2005, 31(08): 1095 -1097 .
[5] 潘庆民;于振文;王月福;田奇卓. 公顷产9000 kg小麦氮素吸收分配的研究[J]. 作物学报, 1999, 25(05): 541 -547 .
[6] 王爱云;田煦. 螯合稀土——硼在苎麻上的应用研究[J]. 作物学报, 1997, 23(05): 597 -602 .
[7] 张磊;张宝石;周荣华;高丽峰;赵光耀;宋彦霞;贾继增. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX2)的克隆及其遗传作图[J]. 作物学报, 2007, 33(09): 1419 -1425 .
[8] 庄克章;郭新宇;王纪华;王空军;吴正锋;刘鹏;董树亭;张吉旺. 高油115籽粒灌浆期光能利用效率[J]. 作物学报, 2007, 33(02): 230 -235 .
[9] 程颖;宋伟;刘志勇;解超杰;倪中福;彭惠茹;聂秀玲;杨作民;孙其信. 小麦品种贵农21抗条锈病基因的SSR标记[J]. 作物学报, 2006, 32(12): 1867 -1872 .
[10] 郑克武;邹江石;吕川根. N肥和栽插密度对杂交稻“两优培九”产量及N素吸收利用的影响[J]. 作物学报, 2006, 32(06): 885 -893 .