欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1885-1895.doi: 10.3724/SP.J.1006.2024.34195

• 综述 •    下一篇

豆科作物轮作强化农田生态系统功能的研究进展

刘春燕1(), 张利影1, 周杰2, 许依1, 杨亚东1, 曾昭海1, 臧华栋1,*()   

  1. 1中国农业大学农学院 / 农业农村部农作制度重点实验室, 北京 100193
    2南京农业大学农学院, 江苏南京 215000
  • 收稿日期:2023-11-17 接受日期:2024-05-07 出版日期:2024-08-12 网络出版日期:2024-05-16
  • 通讯作者: * 臧华栋, E-mail: zanghuadong@cau.edu.cn
  • 作者简介:E-mail: 17861505606@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1901100);国家自然科学基金项目(32101850);国家自然科学基金项目(42207388)

Research progress on the intensification of agroecosystem functions through legume-based crop rotation

LIU Chun-Yan1(), ZHANG Li-Ying1, ZHOU Jie2, XU Yi1, YANG Ya-Dong1, ZENG Zhao-Hai1, ZANG Hua-Dong1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
    2College of Agriculture, Nanjing Agricultural University, Nanjing 215000, Jiangsu, China
  • Received:2023-11-17 Accepted:2024-05-07 Published:2024-08-12 Published online:2024-05-16
  • Contact: * E-mail: zanghuadong@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1901100);National Natural Science Foundation of China(32101850);National Natural Science Foundation of China(42207388)

摘要:

集约化农业对保障国家粮食安全至关重要, 但其导致的生态环境代价与绿色可持续发展之间的矛盾日益突出。引入豆科作物到农田生态系统对于实现地力保育、作物丰产稳产和资源优化利用等多目标协同具有重要意义。本文系统总结了豆科作物轮作对作物生产和土壤功能的主要影响: 1) 豆科作物通过生物固氮、高质量的根际分泌物输入、秸秆还田等过程改善了土壤氮素水平, 产生正向的残留效应, 有利于后茬作物增产, 且增产效应在低产区更显著; 2) 豆科作物轮作可以通过氮肥减施降低系统N2O排放, 但豆科的生物固氮过程有增加CO2排放的风险; 3) 低C/N、高氮含量的豆科秸秆还田能够提高土壤微生物活性和残体积累, 提高土壤固碳效率, 但其固碳效应也受到较低的秸秆生物量投入限制; 4) 豆科作物可以提高后茬作物的水肥利用效率, 同时利用前后茬作物根系深浅合理搭配, 实现轮作周年水肥高效利用。因此, 将豆科作物引入到轮作系统可实现氮肥减施和增产, 但其产生的土壤固碳和温室气体减排效应受到作物种类、肥料投入、土壤和气候条件等多种因素的综合影响。为更好地发挥豆科作物轮作优势, 应深入探究豆科促进后茬作物增产和驱动地下部生态功能提升的耦合机制, 开发豆科作物轮作配套田间管理技术, 并定向设计适合我国典型生态区的新型生态高效种植体系, 对推动豆科作物轮作模式构建与应用及农业绿色发展具有重要理论意义和实践价值。

关键词: 谷物豆科, 豆禾轮作, 作物生产力, 土壤功能, 经济效益

Abstract:

Although intensive agriculture plays a crucial role in ensuring global food security, the conflict between its environmental costs and sustainable development is becoming increasingly prominent. Legume inclusion into agroecosystem is vital for improving soil health, enhancing agroecosystem stability, and achieving resource utilization efficiency. This paper provides a systematic summary of the main effects of the legume-based rotation on crop production and soil function as follows: 1) Legume enhance soil nitrogen (N) content through biological N fixation, high-quality rhizosphere exudates input, and straw incorporation, resulting in positive legacy effects. This, in turn, benefits the subsequent crop yields, particularly in agroecosystems with low soil fertility. 2) Although the biological N fixation of legumes poses the risk of increasing CO2 emissions, it can mitigate greenhouse gas emissions by reducing N fertilization in the rotation. 3) The low C/N ratio and high N content of legume straw promote soil microbial activity and microbial residue accumulation, thereby improving soil carbon sequestration efficiency. However, the limited amount of straw for legumes restricts C sequestration. 4) Legumes can improve water and fertilizer utilization efficiency of subsequent crops, and optimizing the root depth between legume and subsequent crop can enhance the overall efficiency of water and fertilizer usage in the rotation. In conclusion, the inclusion of legumes in crop rotation can achieve a reduction in N fertilizer usage and an increase in yield. However, the effects of soil carbon sequestration and greenhouse gas emission reduction are influenced by various factors such as crop type, fertilizer input, soil, and climate conditions. Exploring the coupling mechanisms between the effects of legumes on subsequent crop yield and belowground ecological functions is of great significance. Developing field management technologies for legume-based crop rotation and designing new ecological and efficient cropping systems suitable for various regions in China will facilitate the construction and implementation of legume-based rotations, contributing to agricultural green development.

Key words: grain legumes, crop rotation, crop productivity, soil ecosystem multifunction, economic benefit

图1

豆科残留效应对农田生态系统功能的影响[10] 此图使用BioRender 软件绘制(https://biorender.com/)。"

表1

豆科作物轮作相比于非豆科作物轮作对土壤碳和氮组分的影响"

前茬作物
Pre-crop
后茬谷物
Subsequent crop
试验地年限
Experiment year
对碳和氮组分的影响
Effect on SOC fraction
引用文献
Reference
玉米Maize 玉米Maize 2 [42]
豇豆Cowpea 玉米Maize 2 SOC+1.7%, TN+23.4%, C/N-18.4%, MBC+30.6%, MBN+193.4% [42]
大豆Soybean 玉米Maize 2 SOC+5.2%, TN+27.7%, C/N-18.4%, MBC+33.2%, MBN+195.3% [42]
小麦Wheat 小麦Wheat 31 [43]
豌豆Pea 小麦Wheat 31 SOC-1.6%, TN-2.8%, Labile SOC+7.4% [43]
小麦Wheat 小麦Wheat 8 [44]
鹰嘴豆Chickpea 小麦Wheat 8 SOC+8.3% [44]
扁豆Lentil 小麦Wheat 8 SOC+0.9% [44]
豌豆Pea 小麦Wheat 8 SOC+5.6% [44]
玉米Maize 玉米Maize 30 [45]
大豆Soybean 玉米Maize 30 SOC-14.0%, C/N-6.5% [45]
小麦Wheat 珍珠栗Pearl millet 3 [46]
鹰嘴豆Chickpea 珍珠栗Pearl millet 3 SOC-0.3% [46]
玉米Maize 玉米Maize [47]
大豆Soybean 玉米Maize TN+4.9% [47]
小麦Wheat 水稻Rice 7 [48]
鹰嘴豆Chickpea 水稻Rice 7 SOC+9.7%, Active C pool+6.0%, Passive C pool +11.3%, POC+31.9% [48]
休耕Fallow 小麦Wheat 2 [49]
绿豆Mungbean 小麦Wheat 2 MBC+13.2%, DOC-13.5%, POC-68.2% [49]
玉米Maize 玉米Maize 2 [50]
藜豆Velvet bean 玉米Maize 2 SOC+15.5%, TN+18.7% [50]
豇豆Cowpea 玉米Maize 2 SOC-2.3%, TN+6.2% [50]
大豆Soybean 玉米Maize 2 SOC+16.3%, TN+18.7% [50]
休耕Fallow 谷物Grain 4 [51]
豆科Legume 谷物Grain 4 SOC+12.0%, MAOM+9.4% [51]

图2

豆科作物轮作系统土壤碳氮循环示意图"

表2

豆科种类、豆科秸秆还田和豆科作物轮作系统对N2O排放的影响[84?????????-94]"

处理
Treatment
后茬谷物
Subsequent crop
地区
Site
试验地年限
Experiment year
氮肥总添加量
N application
(kg N hm-2)
季节或年平均
N2O排放量
N2O emission
(kg N hm-2)
豆科种类Legume specie
扁豆Lentil 加拿大Canada 100 1.29
豌豆Pea 加拿大Canada 100 2.88
蚕豆Fava bean 西班牙Spain 2 20 0.72
黑吉豆Black gram 印度India 0 1.01
大豆Soybean 印度India 0 1.25
扁豆Lentil 印度India 0 0.88
豇豆Bengal gram 印度India 0 0.87
豆科秸秆还田Legume straws returning
落花生Groundnut 水稻Rice 泰国Thailand 1 18.75 (+2.8%)
水稻Rice 水稻Rice 泰国Thailand 1 18.75 7.1
豇豆Cowpea 黑小麦Triticale 葡萄牙Portugal 3 0 (-26.3%)
休耕Fallow 黑小麦Triticale 葡萄牙Portugal 3 0 0.38
豆科作物轮作系统 Legume-grain rotation
蚕豆Fava bean 水稻Rice 中国China 6 240 (-28.9%, -35.5%)
小麦Wheat 水稻Rice 中国China 6 440 1.97
油菜Rape 水稻Rice 中国China 6 440 2.17
蚕豆、豌豆等Faba bea, field pea, etc. 小麦、黑小麦等
Wheat, Triticale, etc.
德国Germany (-16.6%)
非豆科Non-leguminous crops 德国Germany 3.6
豆科Legume 玉米Maize 西班牙Spain 3 150 (-19.7%)
玉米Maize 玉米Maize 西班牙Spain 3 200 0.61
大豆Soybean 玉米Maize 加拿大Canada 2 110 (-29.4%)
玉米Maize 玉米Maize 加拿大Canada 2 310 13.6
羽扇豆Lupin 小麦Wheat 澳大利亚Australia 2 20 (-26.4%)
小麦Wheat 小麦Wheat 澳大利亚Australia 2 125 0.129
[1] 黄国勤, 赵其国. 江西省耕地轮作休耕现状、问题及对策. 中国生态农业学报, 2017, 25: 1002-1007.
Huang G Q, Zhao Q G. Current situation, issues and countermeasures of crop rotation and land fallow in Jiangxi province. Chin J Eco-Agric, 2017, 25: 1002-1007 (in Chinese with English abstract).
[2] Liu C Y, Feng X M, Xu Y, Kumar A, Yan Z J, Zhou J, Yang Y D, Peixoto L, Zeng Z H, Zang H D. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agron Sustain Dev, 2023, 43: 64.
[3] 李彤. 保护性耕作和豆麦轮作对土壤微生物和冬小麦氮素利用的影响. 西北农林科技大学博士学位论文, 陕西杨凌, 2022.
Li T. Effects of Conservation Tillage and Soybean-wheat Rotation on Soil Microorganisms and Nitrogen Utilization in Winter Wheat. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[4] Jensen E S, Hauggaard-Nielsen H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil, 2003, 252: 177-186.
[5] Miao Y, Stewart B A, Zhang F. Long-term experiments for sustainable nutrient management in China: a review. Agron Sustain Dev, 2011, 31: 397-414.
[6] Franke A C, Van den Brand G J, Vanlauwe B, Giller K E. Sustainable intensification through rotations with grain legumes in Sub-saharan Africa: a review. Agric Ecosyst Environ, 2018, 261: 172-185.
[7] Jensen E S, Peoples M B, Boddey R M, Gresshoff P M, Hauggaard-Nielsen H, Alves B J R, Morrison M J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev, 2012, 32: 329-364.
[8] Bagayoko M, Buerkert A, Lung G, Bationo A, Römheld V. Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant Soil, 2000, 218: 103-116.
[9] Liu K, Bandara M, Hamel C, Knight J D, Gan Y. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res, 2020, 248: 107657.
[10] Jing J, Cong W F, Bezemer T M. Legacies at work: plant-soil- microbiome interactions underpinning agricultural sustainability. Trends Plant Sci, 2022, 27: 781-792.
[11] van der Putten W H, Bardgett R D, Bever J D, Bezemer T M, Casper B B, Fukami T, Kardol P, Klironomos J N, Kulmatiski A, Schweitzer J A, Suding K N, Van de Voorde T F J, Wardle D A. Plant-soil feedbacks: the past, the present and future challenges. J Ecol, 2013, 101: 265-276.
[12] Fan J L, McConkey B G, St Luce M, Brandt K. Rotational benefit of pulse crop with no-till increase over time in a semiarid climate. Eur J Agron, 2020, 121: 126155.
[13] Gan Y, Hamel C, O’Donovan J T, Cutforth H, Zentner R P, Campbell C A, Niu Y, Poppy L. Diversifying crop rotations with pulses enhances system productivity. Crop Soil, 2016, 49: 6-10.
[14] Zhao J, Chen J, Beillouin D, Lambers H, Yang Y D, Smith P, Zeng Z H, Olesen J E, Zang H D. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat Commun, 2022, 13: 4926.
doi: 10.1038/s41467-022-32464-0 pmid: 35995796
[15] Sun J, Miller J B, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris R J, Ané J M, Dénarié J, Oldroyd G E. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell, 2015, 27: 823-838.
[16] Peyraud J L, Gall A L, Lüscher A. Potential food production from forage legume-based systems in Europe: an overview. Irish J Agric Food Res, 2009, 48: 115-135.
[17] Wang X Q, Yang Y D, Pei K, Zhou J, Peixoto L, Gunina A, Zeng Z H, Zang H D, Rasmussen J, Kuzyakov Y. Nitrogen rhizodeposition of legumes and its fate in agroecosystems: field study and literature review. Land Degrad Dev, 2020, 32: 410-419.
[18] Zhang K, Zhao J, Wang X Q, Hu H S, Zang H D, Liu J N, Hu Y G, Zeng Z H. Estimates on nitrogen uptake in the subsequent wheat by above-ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain. J Integr Agric, 2019, 18: 571-579.
[19] Smith C J, Chalk P M. Grain legumes in crop rotations under low and variable rainfall: are observed short-term N benefits sustainable? Plant Soil, 2020, 453: 271-279.
[20] Anderson R L. Synergism: a rotation effect of improved growth efficiency. Adv Agron, 2011, 112: 205-226.
[21] 柯丹霞, 徐勤朕, 杨娜, 柏梦焱, 关跃峰. 高氮抑制豆科植物结瘤固氮机制研究进展. 生物技术通报, 2019, 35(10): 40.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0657
Ke D X, Xu Q Z, Yang N, Bai M Y, Guan Y F. Research progresses on the mechanism of high nitrogen inhibiting nodulation and nitrogen fixation in legumes. Biotechnol Bull, 2019, 35(10): 40 (in Chinese with English abstract).
[22] 李玉英, 孙建好, 李春杰, 李隆, 程序, 张福锁. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响. 中国农业科学, 2009, 42: 3467-3474.
Li Y Y, Sun J H, Li C J, Li L, Cheng X, Zhang F S. Effects of interspecific interactions and nitrogen fertilization rates on the agoronmic and nodulation characteristics of intercropped faba bean. Sci Agric Sin, 2009, 42: 3467-3474 (in Chinese with English abstract).
[23] Salvagiotti F, Cassman K G, Specht J E, Walters D T, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res, 2008, 108: 1-13.
[24] Seguin P, Mustafa A F, Sheaffer C C. Effects of soil moisture deficit on forage quality, digestibility, and protein fractionation of Kura clover. J Agron Crop Sci, 2022, 188: 260-266.
[25] Soba D, Arrese-Igor C, Aranjuelo I. Additive effects of heatwave and water stresses on soybean seed yield is caused by impaired carbon assimilation at pod formation but not at flowering. Plant Sci, 2022, 321: 111320.
[26] Baggs E M, Stevenson M, Pihlatie M, Regar A, Cook H, Cadisch G. Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant Soil, 2003, 254: 361-370.
[27] Rebolledo-Leiva R, Almeida-García F, Pereira-Lorenzo S, Ruíz-Nogueira B, Moreira M T, González-Garcia S. Introducing lupin in autochthonous wheat rotation systems in Galicia (NW Spain): an environmental and economic assessment. Sci Total Environ, 2022, 838: 156016.
[28] Schwenke G D, Herridge D F, Scheer C, Rowlings D W, Haigh B M, McMullen K G. Soil N2O emissions under N2-fixing legumes and N-fertilised canola: a reappraisal of emissions factor calculations. Agric Ecosyst Environ, 2015, 202: 232-242.
[29] 吴胜英, 李炜芳, 刘国道. 17种豆科绿肥营养元素分析. 北京农业, 2008, (15): 37-39.
Wu S Y, Li W F, Liu G D. The analysis of 17 kinds of leguminous green manure nutrition elements. Beijing Agric, 2008, (15): 37-39 (in Chinese with English abstract).
[30] 樊虎玲, 郝明德, 李志西. 黄土高原旱地小麦-苜蓿轮作对小麦品质和子粒氨基酸含量的影响. 植物营养与肥料学报, 2007, 13: 262-266.
Fan H L, Hao M D, Li Z X. Effect of alfalfa-wheat rotation system on the quality and amino acid content of wheat in dryland of loess plateau. Plant Nutr Fert Sci, 2007, 13: 262-266 (in Chinese with English abstract).
[31] 李洋, 石柯, 朱长伟, 姜桂英, 罗澜, 孟威威, 申凤敏, 刘芳, 魏芳芳, 刘世亮. 不同轮作模式对黄淮平原潮土区土壤养分及作物产量的影响. 水土保持学报, 2022, 36(2): 312-321.
Li Y, Shi K, Zhu C W, Jiang G Y, Luo L, Meng W W, Shen F M, Liu F, Wei F F, Liu S L. Effect of different crop rotations on soil nutrients and crop yield in fluvo-aquic soil in Huang Huai plain. J Soil Water Conserv, 2022, 36(2): 312-321 (in Chinese with English abstract).
[32] Chen C, Neill K, Burgess M, Bekkerman A. Agronomic benefit and economic potential of introducing fall-seeded pea and lentil into conventional wheat-based crop rotations. Agron J, 2012, 104: 215-224.
[33] Brisson N, Gate P, Gouache D, Charmet G, Oury F X, Huard F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res, 2010, 119: 201-212.
[34] Knapp S, van der Heijden M G. A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun, 2018, 9: 3632.
doi: 10.1038/s41467-018-05956-1 pmid: 30194344
[35] Popescu A. Research regarding oil seeds crops development in Romania in the EU context. Econ Agric, 2012, 59: 129-137.
[36] Waldman K B, Ortega D L, Richardson R B, Snapp S S. Estimating demand for perennial pigeon pea in Malawi using choice experiments. Ecol Econ, 2017, 131: 222-230.
doi: 10.1016/j.ecolecon.2016.09.006 pmid: 28050117
[37] Nie J W, Wang X Q, Ma S T, Zhang K, Zhang X Q, Zhao J, Zang H D, Yang Y D, Zeng Z H. Evaluation of crop productivity, water and nitrogen use, and carbon footprint of summer peanut-winter wheat cropping systems in the North China Plain. Food Energy Secur, 2022, 11: e401.
[38] Galantini J A, Landriscini M R, Iglesias J O, Miglierina A M, Rosell R A. The effects of crop rotation and fertilization on wheat productivity in the Pampean semiarid region of Argentina: 2. Nutrient balance, yield and grain quality. Soil Tillage Res, 2000, 53: 137-144.
[39] López-Bellido L, Muñoz-Romero V, Benítez-Vega J, Fernández- García P, Redondo R, López-Bellido R J. Wheat response to nitrogen splitting applied to a Vertisols in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. Eur J Agron, 2012, 43: 24-32.
[40] Schäfer B C. Mit Fruchtfolgen Witterungsrisiken trotzen. Praxisnah, 2013, 1: 5-7.
[41] Preissel S, Reckling M, Schläfke N, Zander P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crops Res, 2015, 175: 64-79.
[42] Yusuf A A, Abaidoo R C, Iwuafor E N O, Olufajo O O, Sanginga N. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric Ecosyst Environ, 2009, 129: 325-331.
[43] Su F, Hao M, Wei X. Soil organic C and N dynamics as affected by 31 years cropping systems and fertilization in highland agroecosystems. Agric Ecosyst Environ, 2022, 326: 107769.
[44] Liu K, Bandara M, Hamel C, Knight J D, Gan Y. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res, 2022, 248: 107657.
[45] Cui J W, Song D L, Dai X L, Xu X P, He P, Wang X Y, Liang G Q, Zhou W, Zhu P. Effects of long-term cropping regimes on SOC stability, soil microbial community and enzyme activities in the Mollisol region of Northeast China. Appl Soil Ecol, 2022, 164: 103941.
[46] Singh G, Bhattacharyya R, Das T K, Sharma A R, Ghosh A, Das S, Jha P. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res, 2018, 184: 291-300.
[47] Tiemann L K, Grandy A S, Atkinson E E, Marin-Spiotta E, McDaniel M D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett, 2015, 18: 761-771.
doi: 10.1111/ele.12453 pmid: 26011743
[48] Kumar N, Nath C P, Hazra K K, Das K, Venkatesh M S, Singh M K, Singh S S, Praharaj C S, Singh N P. Impact of zero-till residue management and crop diversification with legumes on soil aggregation and carbon sequestration. Soil Tillage Res, 2019, 189: 158-167.
[49] Hassan A, Ijaz S S, Lal R, Ali S, Hussain Q, Ansar M, Khattak R H, Baloch M S. Depth distribution of soil organic carbon fractions in relation to tillage and cropping sequences in some dry lands of Punjab, Pakistan. Land Degrad Dev, 2016, 27: 1175-1185.
[50] Uzoh I M, Igwe C A, Okebalama C B, Babalola O O. Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil. Sci Rep, 2019, 9: 8539.
doi: 10.1038/s41598-019-43679-5 pmid: 31189881
[51] van der Pol, Laura K, Robertson A, Schipanski M, Calderon F J, Wallenstein M D, Cotrufo M F. Addressing the soil carbon dilemma: Legumes in intensified rotations regenerate soil carbon while maintaining yields in semi-arid dryland wheat farms. Agric Ecosyst Environ, 2022, 330: 107906.
[52] Yan Z, Zhou J, Nie J, Yang Y, Zhao J, Zeng Z, Marshall M R, Peixoto L, Zang H. Do cropping system and fertilization rate change water-stable aggregates associated carbon and nitrogen storage? Environ Sci Pollut Res, 2021, 28: 65862-65871.
[53] Frankow-Lindberg B E, Dahlin A S. N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant Soil, 2013, 370: 567-581.
[54] 王国义, 张培英, 孙聪殊, 沈昌蒲. 大豆肥田机制的研究: IV. 大豆对耕层土壤微形态的动态影响. 大豆科学, 2001, 20: 204-208.
Wang G Y, Zhang P Y, Sun C S, Shen C P. Study on the mechanism of soybeans fertilizing soil: IV. The dynamic effect of soybean on micromorphology of the tilth soil. Soybean Sci, 2001, 20: 204-208 (in Chinese with English abstract).
[55] Yan Z, Zhou J, Yang L, Gunina A, Yang Y, Peixoto L, Zeng Z H, Zang H D, Kuzyakov Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: results of three fractionation methods. Sci Total Environ, 2022, 824: 153878.
[56] Duda G P, Guerra J G M, Monteiro M T, De-Polli H, Teixeira M G. Perennial herbaceous legumes as live soil mulches and their effects on C, N and P of the microbial biomass. Sci Agricola, 2003, 60: 139-147.
[57] Li G R, Tang X Q, Hou Q M, Li T, Xie H X, Lu Z Q, Zhang T S, Liao Y C, Wen X X. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: a global meta-analysis. Agric Ecosyst Environ, 2023, 342: 108231.
[58] Carranca C, Oliveira A, Pampulha E, Torres M O. Temporal dynamics of soil nitrogen, carbon and microbial activity in conservative and disturbed fields amended with mature white lupine and oat residues. Geoderma, 2009, 151: 50-59.
[59] Cotrufo M F, Wallenstein M D, Boot C M, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol, 2013, 19: 988-995.
doi: 10.1111/gcb.12113 pmid: 23504877
[60] Sun T, Feng X, Lal R, Cao T, Guo J, Deng A, Zheng C, Zhang J, Song Z, Zhang W. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints. Agric Ecosyst Environ, 2021, 321: 107614.
[61] Yin C T, Jones K L, Peterson D E, Garrett K A, Hulbert S H, Paulitz T C. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem, 2010, 42: 2111-2118.
[62] Ramirez K S, Lauber C L, Knight R, Bradford M A, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 2010, 91: 3463-3470.
pmid: 21302816
[63] Minasny B, Malone B P, McBratney A B, Angers D A, Arrouays D, Chambers A, Winowiecki L. Soil carbon 4 per mille. Geoderma, 2017, 292: 59-86.
[64] Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatté C. Atmosphere-soil carbon transfer as a function of soil depth. Nature, 2018, 559: 599-602.
[65] Chaopricha N T, Marín-Spiotta E. Soil burial contributes to deep soil organic carbon storage. Soil Biol Biochem, 2014, 69: 251-264.
[66] Liu E, Zhou J, Yang X, Jin T, Zhao B, Li L, Wen Y, Soldatova E, Zamanian K, Gopalakrishnan S, Mei X, Kuzyakov Y. Long-term organic fertilizer-induced carbonate neoformation increases carbon sequestration in soil. Environ Chem Lett, 2023, 21: 663-671.
[67] Zhou J, Guillaume T, Wen Y, Blagodatskaya E, Shahbaz M, Zeng Z, Peixoto L, Zang H, Kuzyakov Y. Frequent carbon input primes decomposition of decadal soil organic matter. Soil Biol Biochem, 2022, 175: 108850.
[68] 李军贤. 豆科作物轮作对半干旱地区农作系统氮平衡和生产力的影响. 甘肃农业大学博士学位论文, 甘肃兰州, 2019.
Li J X. Nitrogen Balance and Productivity of Different Legume-included Rotations in a Semi-arid Agroecosystem. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract).
[69] Li F, Sørensen P, Li X, Olesen J E. Carbon and nitrogen mineralization differ between incorporated shoots and roots of legume versus non-legume based cover crops. Plant Soil, 2020, 446: 243-257.
[70] Geng S, Tan J F, Li L T, Miao Y H, Wang Y L. Legumes can increase the yield of subsequent wheat with or without grain harvesting compared to Gramineae crops: a meta-analysis. Eur J Agron, 2023, 142: 126643.
[71] Nuruzzaman M, Lambers H, Bolland M D A, Veneklaas E J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil, 2005, 271: 175-187.
[72] Rehman A, Farooq M, Ozturk L, Asif M, Siddique K H M. Zinc nutrition in wheat-based cropping systems. Plant Soil, 2018, 422: 283-315.
[73] Hossain M S, Hossain A, Sarkar M A R, Jahiruddin M, Teixeira da Silva J A, Hossain M I. Productivity and soil fertility of the rice-wheat system in the High Ganges River Floodplain of Bangladesh is influenced by the inclusion of legumes and manure. Agric Ecosyst Environ, 2016, 218: 40-52.
[74] Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions. J Exp Bot, 2012, 63: 43-57.
doi: 10.1093/jxb/err266 pmid: 21914658
[75] López-Bellido L, Muñoz-Romero V, Benítez-Vega J, Fernández- García P, Redondo R, López-Bellido R J. Wheat response to nitrogen splitting applied to a Vertisols in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. Eur J Agron, 2012, 43: 24-32.
[76] Gheysari M, Sadeghi S H, Loescher H W, Amiri S, Zareian M J, Majidi M M, Asgarinia P, Payero J O. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric Water Manag, 2017, 182: 126-138.
[77] Qin W, Zhang X, Chen S, Sun H, Shao L. Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation. Agric Water Manag, 2018, 210: 330-339.
[78] Ben-Asher J, Tsuyuki I, Bravdo B A, Sagih M. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag, 2006, 83: 13-21.
[79] Nie J, Harrison M T, Zhou J, Yang L, Zhao J, Wang X, Liu K, Wang S, Zang H, Yang Y, Zeng Z. Productivity and water use efficiency of summer soybean-winter wheat rotation system under limited water supply in the North China Plain. Eur J Agron, 2023, 151: 126959.
[80] Plaza-Bonilla D, Nolot J M, Raffaillac D, Justes E. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur J Agron, 2017, 82: 331-341.
[81] Cutforth H W, Angadi S V, McConkey B G, Miller P R, Ulrich D, Gulden R, Volkmar K M, Entz M H, Brandt S A. Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian prairie. Can J Soil Sci, 2013, 93: 147-160.
[82] Gan Y, Hamel C, Kutcher H R, Poppy L. Lentil enhances agroecosystem productivity with increased residual soil water and nitrogen. Renew Agric Food Syst, 2017, 32: 319-330.
[83] Zhong Z, Nelson L M, Lemke R L. Nitrous oxide emissions from grain legumes as affected by wetting/drying cycles and crop residues. Biol Fert Soils, 2011, 47: 687-699.
[84] Sánchez-Navarro V, Zornoza R, Faz Á, Fernández J A. A comparative greenhouse gas emissions study of legume and non-legume crops grown using organic and conventional fertilizers. Sci Hortic-Amsterdam, 2020, 260: 108902.
[85] Ghosh S, Majumdar D, Jain M. Nitrous oxide emissions from kharif and rabi legumes grown on an alluvial soil. Biol Fert Soils, 2002, 35: 473-478.
[86] Kaewpradit W, Toomsan B, Vityakon P, Limpinuntana V, Saenjan P, Jogloy S, Patanothai A, Cadisch G. Regulating mineral N release and greenhouse gas emissions by mixing groundnut residues and rice straw under field conditions. Eur J Soil Sci, 2008, 59: 640-652.
[87] Oliveira M, Castro C, Coutinho J, Trindade H. Grain legume-based cropping systems can mitigate greenhouse gas emissions from cereal under Mediterranean conditions. Agric Ecosyst Environ, 2021, 313: 107406.
[88] Cai S, Pittelkow C M, Zhao X, Wang S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J Clean Prod, 2018, 195: 289-300.
[89] Reckling M, Bergkvist G, Watson C A, Stoddard F L, Zander P M, Walker R L, Prister A, Toncea I, Bachinger J. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front Plant Sci, 2016, 7: 669.
doi: 10.3389/fpls.2016.00669 pmid: 27242870
[90] Fernández-Ortega J, Álvaro-Fuentes J, Cantero-Martínez C. The use of double-cropping in combination with no-tillage and optimized nitrogen fertilization reduces soil N2O emissions under irrigation. Sci Total Environ, 2023, 857: 159458.
[91] Quesnel J, VanderZaag A C, Crolla A, Kinsley C, Gregorich E G, Wagner-Riddle C. Surface and subsurface N2O losses from dairy cropping systems. Nutr Cycl Agroecosys, 2019, 114: 277-293.
doi: 10.1007/s10705-019-10004-5
[92] Li G D, Schwenke G D, Hayes R C, Lowrie A J, Lowrie R J, Poile G J, Oates A A, Xu B B, Rohan M. Can legume species, crop residue management or no-till mitigate nitrous oxide emissions from a legume-wheat crop rotation in a semi-arid environment? Soil Tillage Res, 2021, 209: 104910.
[93] Rochester I J. Estimating nitrous oxide emissions from flood- irrigated alkaline grey clays. Aust J Soil Res, 2003, 41: 197-206.
[94] Soussana J F, Tallec T, Blanfort V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 2010, 4: 334-350.
doi: 10.1017/S1751731109990784 pmid: 22443939
[95] MacKenzie A F, Fan M X, Cadrin F. Nitrous oxide emission as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization. Can J Soil Sci, 1997, 77: 145-152.
[96] Barton L, Murphy D V, Butterbach-Bahl K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric Ecosyst Environ, 2013, 167: 23-32.
[97] Galloway J N. The global nitrogen cycle: changes and consequences. Environ Pollut, 1998, 102: 15-24.
[98] Oliveira M, Castro C, Coutinho J, Trindade H. N supply and pre-cropping beneffts to triticale from three legumes in rainfed and irrigated Mediterranean crop rotations. Field Crops Res, 2019, 237: 32-42.
[99] Li G D, Schwenke G D, Hayes R C, Lowrie A J, Lowrie R J, Poile G J, Oates A A, Xu B B, Rohan M. Can legume species, crop residue management or no-till mitigate nitrous oxide emissions from a legume-wheat crop rotation in a semi-arid environment? Soil Tillage Res, 2021, 209: 104910.
[100] Chapela I H, Osher L J, Horton T R, Henn M R. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem, 2001, 33: 1733-1740.
[101] Massimiliano D, Bell M, Grace P R, Scheer C, Rowling D W, Liu S. Legume pastures can reduce N2O emissions intensity in subtropical cereal cropping systems. Agric Ecosyst Environ, 2015, 204: 27-29.
[1] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[2] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应[J]. 作物学报, 2023, 49(5): 1316-1326.
[3] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
[4] 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703.
[5] 李淑娅,田少阳,袁国印,葛均筑,徐莹,王梦影,曹凑贵,翟中兵,凌霄霞,展茗,赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J]. 作物学报, 2015, 41(10): 1537-1547.
[6] 郭九信,冯绪猛,胡香玉,田广丽,王伟,陈健,刘田,艾山江?赛衣丁,郭世伟. 氮肥用量及钾肥施用对稻麦周年产量及效益的影响[J]. 作物学报, 2013, 39(12): 2262-2271.
[7] 王寅,鲁剑巍,李小坤,任涛,丛日环,占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果[J]. 作物学报, 2013, 39(08): 1491-1500.
[8] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明. 黄淮海双季玉米产量性能与资源效率的研究[J]. 作物学报, 2011, 37(07): 1229-1234.
[9] 刘月华,陈源泉,朱敏,曲波,隋鹏,高旺盛. 海河低平原区杨农复合模式内作物生产力与生态因子的关系[J]. 作物学报, 2010, 36(08): 1355-1361.
[10] 邹娟;鲁剑巍;陈防;李银水. 氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响[J]. 作物学报, 2009, 35(1): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[4] 李玲;潘瑞炽. PP333在水稻和花生可食部分及土壤中残留量的研究[J]. 作物学报, 1997, 23(06): 707 -711 .
[5] 陈辉;范源洪;向余颈攻;蔡青;张亚平. 从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J]. 作物学报, 2003, 29(03): 379 -385 .
[6] 王洪刚;朱军;刘树兵. 利用细胞学和RAPD技术鉴定抗病小偃麦易位系[J]. 作物学报, 2001, 27(06): 886 -890 .
[7] 李秀菊;孟繁静. 大豆品种早12花序分化形成期间的内源植物激素变化[J]. 作物学报, 1997, 23(04): 446 -449 .
[8] 王化岑;刘万兴;刘万代;马元喜;王晨阳;鲁文锁;李九星. 超高产冬小麦根系生长动态与解剖学结构初步观察[J]. 作物学报, 1998, 24(06): 952 -956 .
[9] 韩天富;盖钧镒;陈凤云;邱家驯. 生育期结构不同的大豆品种的光周其反应和农艺性状[J]. 作物学报, 1998, 24(05): 550 -557 .
[10] 张京. 中国大麦育种主要矮源的遗传等位测验[J]. 作物学报, 1998, 24(01): 42 -46 .