欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1139-1145.doi: 10.3724/SP.J.1006.2009.01139

• 研究简报 • 上一篇    下一篇

白芥和甘蓝型油菜属间杂种后代种子结构比较

韦存虚1,李爱民1,2,张永泰2,周卫东3,王幼平1,*   

  1. 1扬州大学生物科学与技术学院,江苏扬州225009;2江苏里下河地区农业科学研究所,江苏扬州225007;3扬州大学测试中心,江苏扬州225009
  • 收稿日期:2008-11-27 修回日期:2009-02-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 王幼平,E-mail:wangyp@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30571175,30671166)和扬州市科技合作基金项目资助。

Comparison of Seed Structure of Progenies from Intergeneric Hybrids between Sinapis alba and Brassica napus

WEI Cun-Xu1,LI Ai-Min12,ZHANG Yong-Tai2,ZHOU Wei-Dong3,WANG You-Ping1*   

  1. 1College of Bioscience and Biotechnology,Yangzhou University,Yangzhou 225009,China;2Jiangsu Institute of Agricultural Science in the Lixiahe district,Yangzhou 225007,China;3Analytical Centre,Yangzhou University,Yangzhou 225009,China
  • Received:2008-11-27 Revised:2009-02-17 Published:2009-06-12 Published online:2009-04-16
  • Contact: WANG You-Ping,E-mail:wangyp@yzu.edu.cn

摘要:

白芥具有很多优良的农艺性状,从白芥和甘蓝型油菜属间体细胞杂种后代中筛选出多个具有黄籽或趋向黄籽性状的株系,利用光学显微镜和电子显微镜技术观察它们种子的结构。回交后代种皮解剖结构与甘蓝型油菜相似,而与白芥相差较远。种皮色素主要分布在栅栏层,甘蓝型油菜和部分后代株系中有色素分布,而白芥和部分黄籽后代株系中没有色素分布。栅栏层在甘蓝型油菜中最厚,在白芥中最薄,而后代介于两者之间。回交后代和甘蓝型油菜种皮表面纹饰为网-穴状,白芥为沟槽状或水疱状。胚子叶细胞面积以白芥最小,甘蓝型油菜最大,后代介于两者之间;而蛋白体面积指数以白芥最大,甘蓝型油菜最小,后代介于两者之间。超微结构观察表明,亲本和后代蛋白体均为球状晶体蛋白体,油体有大、小两种,其大小在亲本和后代间有差异。上述结果表明,回交后代株系种子解剖结构与甘蓝型油菜相近,种皮颜色、色泽深浅和栅栏层厚度,以及胚子叶细胞大小、油体和蛋白体等受亲本白芥的影响而发生变化。

关键词: 白芥, 甘草型油菜, 体细胞杂种后代, 种子结构, 黄籽

Abstract:

Sinapis alba L. possesses desirable agronomic characters. The backcross progenies of intergeneric hybrids between S. alba and Brassica napus L. obtained the valuable agronomic traits from S. alba. Seed structure of some yellow and yellow-like seed lines, which were selected from backcross progenies, was observed under light microscopy and electronic microscopy. The morphologically anatomical structure of seed coat of backcross progenies resembled that of B. napus, but was different from that of S. alba. Seed coat of B. napus was composed of flattened epidermis, crushed subepidermis, U-shaped-a palisade layer and aleurone layer, while seed coat of S. alba was composed of intestine-shaped epidermis, ellipse subepidermis, U-shaped-b palisade layer and aleurone layer. The pigments of seed coat were mainly distributed in the palisade layer. There were pigments in seed coats of B. napus and some backcross progenies, but no pigments in those of S. alba and other backcross progenies. The palisade layer was thicker in B. napus, thinner in S. alba, and intermediate in hybrid progenies. Seed coat microsculpturing was observed with scanning electronic microscope. The reticulate-foveate pattern was the characteristics of B. napus and hybrid progenies, while the blister pattern of H2O-immersed seed and the sulcate pattern of dry seed were the characteristics of S. alba. The area of cotyledon cell was larger in B. napus, smaller in S. alba, and intermediate in hybrid progenies. The area index of protein body in cotyledon cell was higher in S. alba, lower in B. napus, and intermediate in progenies. The observations of ultrastructure showed that protein bodies were heterogeneous with crystal globoids in parents and progenies. Oilbodies included large and small oilbodies, and their sizes were different from each other between parents and progenies. The above results showed that the anatomy of the progeny seeds was similar to that of B. napus, but the seed color, the thickness of palisade layer, cotyledon cell size, protein body and oilbody were affected by S. alba.

Key words: Sinapis alba L., Brassica napus L., Progeny of somatic hybrids, Seed structure, Yellow seed

[1] Liu H-L(刘后利). Origin and evolution of some Brassicas. Acta Agron Sin(作物学报), 1984, 10(1): 9-18(in Chinese with English abstract)

[2] Yan M-L(严明理). Studies on the molecular mechanism of formation of yellow seeds in Brassica juncea. PhD Dissertation of Hunan University (湖南农业大学), 2007. p 1 (in Chinese with English abstract)

[3] Downey R K. Rapeseed and Mustard. In: Fehr W R ed. Principles of Cultivar Development. New York: Macmillan Publishing Company, 1987. pp 437-486

[4] Wang Y P, Sonntag K, Rudloff E, Chen J M. Intergeneric somatic hybridization between Brassica napus and Sinapis alba. Integr J Plant Biol, 2005, 47: 84-91

[5] Bodnaryk R P, Lamb R J. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Can J Plant Sci, 1991, 71: 13-20

[6] Hansen L N, Earle E D. Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet, 1997, 94: 1078-1085

[7] Lelivelt C L C, Leunissen E H M, Frederiks H J, Helsper J P F C, Krens F A. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by sexual and somatic hybridization. Theor Appl Genet, 1993, 85: 688-696

[8] Brown J, Brown A P, Davis J B, Erickson D. Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica, 1997, 93: 163-168

[9] Chevre A M, Eber F, Margale E, Kerlan M C, Primard C, Vedel F, Delseny M, Pelletier G. Comparison of somatic and sexual Brassica napus-Sinapis alba hybrids and their progeny by cytogenetic studies and molecular characterization. Genome, 1994, 37: 367-374

[10] Wang Y P, Zhao X X,Sonntag K,Wehling P, Snowdon R J. Behaviour of Sinapis alba addition chromosomes in a Brassica napus background revealed by genomic in situ hybridisation. Chromosome Res, 2005, 13: 819-826

[11] Hu S-Y(胡适宜), Xu L-Y(徐丽云). A cytochemical technique for demonstration of lipids, polysaccharides and protein bodies in thick resin sections. Acta Bot Sin (植物学报), 1990, 32(11): 841-846 (in Chinese with English abstract)

[12] Buth G M, Ara R. Seed coat anatomy of some cultivated Brassica. Phytomorphology, 1981, 31: 69-78

[13] Zeng C L, Wang J B, Liu A H, Wu X M. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Ann Bot, 2004, 93: 555-566

[14] Koul K K, Nagpal R, Raina S N. Seed coat microsculpturing in Brassica and allied genera (Subtribes Brassicinae Raphaninae, Moricandiinae). Ann Bot, 2000, 86: 385-397

[15] Harris W M. Seed coat development in radish (Raphanus sativus L.). Phytomorphology, 1991, 41: 341-349

[16] Windsor J B, Symonds V V, Mendenhall J, Lloyd A M. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J, 2000, 22: 483-493

[17] Bouman F. Integument initiation and testa development in some Cruciferae. Bot J Linn Soc, 1975, 70: 213-299

[18] Vaughan J G, Whitehouse J M. Seed structure and the taxonomy of the Cruciferae. Bot J Linn Sci, 1971, 64: 383-409

[19] Wan L L, Xia Q, Qiu X, Selvaraj G. Early stages of seed development in Brassica napus: A seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. Plant J, 2002, 30: 1-10

[20] Marles M A S, Gruber M Y. Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251-262

[21] Li C-H(李崇辉), Chen W-Y(陈文艺). An investigation on the distribution of rape yellow seeds and its variation in seed coat colour. J Southwest Agric Uni(西南农业大学学报), 1998, 20(3): 256-259 (in Chinese with English abstract)

[22] Lott J N A. Protein bodies in seeds. Nord J Bot, 1981, 1: 421-423

[23] Chen P, Lott J N A. Studies of Capsicum annuum L. seeds: structure, storage reserves and mineral nutrients. Can J Bot, 1992, 70: 518-529

[24] Tzen J T C, Cao Y Z, Laurent P, Ratnayake C, Huang A H C. Lipids, proteins and structure of seed oilbodies from diverse species. Plant Physiol, 1993, 101: 267-276

[25] Rodrigo M P S, Findlay K, Lopez-Villalobos A, Yeung E C, Nykiforuk C L, Moloney M M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 2006, 18: 1961-1974

[26] Ting J T L, Lee K Y, Ratnayake C, Platt K A, Balsamo R A, Huang A H C. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents: size and shape of intracellular oilbodies are determined by the oleosins oils ratio. Planta, 1996, 199: 158-165
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 鲜小华,王嘉,徐新福,曲存民,卢坤,李加纳,刘列钊. 整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点[J]. 作物学报, 2018, 44(8): 1105-1113.
[3] 赵会彦,肖麓,赵志,杜德志*. 青海大黄油菜粒色性状分子标记的开发和图谱整合[J]. 作物学报, 2014, 40(06): 965-972.
[4] 张子龙, 陶士珩, 李加纳. 甘蓝型黄籽油菜与黑籽油菜苗期生理特性的比较研究[J]. 作物学报, 2007, 33(05): 837-842.
[5] 张永泰;李爱民;陆莉;陈柳;惠飞虎;王幼平. 通过甘蓝型油菜和白芥属间杂种后代的小孢子培养获得二体异附加系[J]. 作物学报, 2006, 32(11): 1764-1766.
[6] 刘后利. 甘蓝型黄籽油菜的遗传研究[J]. 作物学报, 1992, 18(04): 241-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!