欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1465-1473.doi: 10.3724/SP.J.1006.2020.01022

• 综述 •    下一篇

小麦族的基因组显性及其育种学意义

刘登才*(), 张连全, 郝明, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良   

  1. 四川农业大学小麦研究所, 四川成都 611130
  • 收稿日期:2020-03-18 接受日期:2020-07-02 出版日期:2020-10-12 网络出版日期:2020-07-06
  • 通讯作者: 刘登才
  • 基金资助:
    国家自然科学基金项目(91935303);国家自然科学基金项目(31671689);国家自然科学基金项目(31671682);四川省育种公关和产业技术体系项目

Genome dominance and the breeding significance in Triticeae

LIU Deng-Cai*(), ZHANG Lian-Quan, HAO Ming, HUANG Lin, NING Shun-Zong, YUAN Zhong-Wei, JIANG Bo, YAN Ze-Hong, WU Bi-Hua, ZHENG You-Liang   

  1. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2020-03-18 Accepted:2020-07-02 Published:2020-10-12 Published online:2020-07-06
  • Contact: Deng-Cai LIU
  • Supported by:
    National Natural Science Foundation of China(91935303);National Natural Science Foundation of China(31671689);National Natural Science Foundation of China(31671682);Sichuan Province Science & Technology Department Crops Breeding Project, and the Sichuan Province Agriculture and Affairs Department Innovative Research Team

摘要:

小麦族包含大量由不同基因组组成的异源多倍体物种。同一个异源多倍体物种的不同基因组可能对表型性状产生非对称性贡献, 例如小麦属多倍体物种的形态分类特性, 更像其A基因组供体物种, 这种现象称为A基因组显性。由于基因组显性, 小麦族形成了以A、D、U、St为轴心(显性)基因组的异源多倍体物种簇。异源多倍体物种的基因组显性可能与其进化适应优势的形成有关。在育种方面, 基因组显性影响多倍体新作物开发及小麦-外源染色体易位设计。

关键词: 基因组非对称, 异源多倍体, 轴心基因组

Abstract:

Triticeae tribe houses a number of allopolyploid species that harbor combinations of various genomes. The different genomes of an allopolyploid may have asymmetric contributions to morphological traits. For instance, the taxon traits of allopolyploids within genus Triticum is highly like those from the donor species of A-genome, termed this phenomenon as A-genome dominance. Because of genome dominance, the allopolyploids of Triticeae are grouped into different species clusters with A, D, U, or St as the pivotal (dominant) genome. Genome dominance may confer the advantages in evolution and adaptation. In breeding, it is an important factor to influence the development of novel allopolyploid crops and the design of wheat-alien chromosome translocations.

Key words: allopolyploid, genome asymmetry, pivotal genome

图1

四倍体小麦、节节麦和普通小麦 普通小麦的株型穗型与它的AB基因组供体物种四倍体小麦相像, 而与它的D基因组供体物种节节麦差异很大。"

图2

以A、D、U、St基因组形成的异源多倍体物种簇"

图3

人工合成新多倍体及其亲本物种的穗型 a: 新合成的六倍体(AABBUU、AABBMM、AABBCC)及其亲本四倍体小麦(AABB)、小伞山羊草(Ae. umbellulata, UU)、顶芒山羊草(Ae. comosa, MM)、尾状山羊草(Ae. caudata, CC)。b: 新合成的六倍体(AABBAuAu、AABBAmAm、AAGGDD)、八倍体(AABBDDAmAm、AABBDDDD)及其二倍体乌拉尔图小麦(AuAu)、栽培一粒小麦(AmAm)、节节麦(DD)、四倍体小麦(AABB)、提莫菲维小麦(AAGG)。"

[1] Lanker M, Bell M, Picasso V D. Farmer perspectives and experiences introducing the novel perennial grain Kernza intermediate wheatgrass in the US Midwest. Renew Agric Food Syst, 2019, 1-10.
[2] Kihara H. Genome analyse of Triticum and Aegilops. Cytologia, 1930,1:263-284.
[3] Dewey D R. The genomic system of classification as a guide to intergeberic hybridization with the perennial Triticeae. In: Gustafson J P, ed. Gene Manipulation in Plant Improvement. New York, USA: Plenum Publishing, 1984. pp 209-279.
[4] Löve Á. Conspectus of the Triticeae. Feddes Rep, 1984,95:425-521.
[5] Yen C, Yang J L. Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). Breed Sci, 2009,59:513-518.
doi: 10.1270/jsbbs.59.513
[6] Dvořák J, Terlizzi P D, Zhang H B, Resta P. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 1993,36:21-31.
doi: 10.1139/g93-004 pmid: 18469969
[7] Kihara H. Discovery of the DD analyser, one of the tetraploid. Agric Hortic, 1944,19:889-890.
[8] Petersen G, Seberg O, Yde M, Berthelsenb K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol, 2006,39:70-82.
doi: 10.1016/j.ympev.2006.01.023 pmid: 16504543
[9] Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 2007,24:217-227.
doi: 10.1093/molbev/msl151 pmid: 17053048
[10] McFadden E S, Sears E R. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 1944,13:26-27.
[11] Ogbonnaya F C, Halloran G M, Lagudah E S. D genome of wheat-60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service. Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005. pp 205-220.
[12] Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci USA, 2002,99:8133-8138.
doi: 10.1073/pnas.072223799 pmid: 12060759
[13] Feldman M, Levy A A, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot, 2012,63:5045-5059.
doi: 10.1093/jxb/ers192
[14] Eckardt N A. Genome dominance and interaction at the gene expression level in allohexaploid wheat. Plant Cell, 2014,26:1834.
doi: 10.1105/tpc.114.127183 pmid: 24838977
[15] 颜济, 杨俊良. 小麦族生物系统学. 中国农业出版社, 1998. pp 1-271.
Yen C, Yang J L. Biosystematics of Triticeae. China Agriculture Press, 1998. pp 1-271(in Chinese).
[16] Kihara H. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia, 1954,19:336-357.
doi: 10.1508/cytologia.19.336
[17] Zohary D, Feldman M. Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution, 1962,16:44-61.
doi: 10.1111/evo.1962.16.issue-1
[18] Kimber G, Yen Y. Analysis of pivotal-differential evolutionary patterns. Proc Natl Acad Sci USA, 1988,85:9106-9108.
doi: 10.1073/pnas.85.23.9106 pmid: 16594002
[19] Feldman M. Chromosome pairing between differential genomes in hybrids of tetraploid Aegilops species. Evolution, 1965,19:563-568.
doi: 10.1111/evo.1965.19.issue-4
[20] Resta P, Zhang H B, Dubcovsky J, Dvořák J. The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am J Bot, 1996,83:1556-1565.
doi: 10.1002/j.1537-2197.1996.tb12813.x
[21] Senerchia N, Felber F, Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol, 2014,202:975-985.
doi: 10.1111/nph.12731
[22] Akhunov E D, Sehgal S, Liang H Q, Wang S C, Akhunova A R, Kaur G, Li W L, Forrest K L, See D, Šimková H, Ma Y Q, Hayden M J, Luo M C, Faris J D, Doležel J, Gill B S. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploidy wheat. Plant Physiol, 2013,161:252-265.
doi: 10.1104/pp.112.205161
[23] Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi U M, Alaux M, Doležel J, Fahima T, Budak H, Keller B, Salvi S, Maccaferri M, Steinbach D, Feuillet C, Quesneville H, Salse J. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J, 2013,76:1030-1044.
doi: 10.1111/tpj.12366
[24] Leitch I, Bennett M. Genome downsizing in polyploidy plants. Biol J Linnean Soc, 2004,82:651-663.
doi: 10.1111/j.1095-8312.2004.00349.x
[25] Baack E J, Whitney K D, Rieseberg L H. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol, 2005,167:623-630.
doi: 10.1111/j.1469-8137.2005.01433.x pmid: 15998412
[26] Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell, 2014,26:4311-4327.
doi: 10.1105/tpc.114.129841
[27] Pont C, Salse J. Wheat paleohistory created asymmetrical genomic evolution. Curr Opin Plant Biol, 2017,36:29-37.
doi: 10.1016/j.pbi.2017.01.001 pmid: 28182971
[28] Song Z P, Dai S F, Jia Y N, Zhao L, Kang L Z, Liu D C, Wei Y M, Zheng Y L, Yan Z H. Development and characterization of Triticum turgidum-Aegilops umbellulata amphidiploids. Plant Genet Resour, 2019,17:24-32.
doi: 10.1017/S1479262118000254
[29] Yen C, Yang J, Yen Y. Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxon Sin, 2005,43:82-93.
doi: 10.1360/aps040073
[30] 颜济, 杨俊良, Baum B R. 小麦族生物系统学. 北京: 中国农业出版社, 2006. pp 1-309.
Yan J, Yang J L, Baum B R. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2006. pp 1-309(in Chinese).
[31] 颜济, 杨俊良. 小麦族生物系统学. 北京: 中国农业出版社, 2011. pp 1-620.
Yan J, Yang J L. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2011. pp 1-620(in Chinese).
[32] 颜济, 杨俊良. 小麦族生物系统学. 北京: 中国农业出版社, 2013. pp 1-630.
Yan J, Yang J L. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2013. pp 1-630(in Chinese).
[33] Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007,316:1862-1866.
doi: 10.1126/science.1143986 pmid: 17600208
[34] Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012,192:763-774.
doi: 10.1534/genetics.112.146316
[35] Larter E N. Triticale Agriculture. In: The Canadian Encyclopedia. Canadian: Anthony Wilson-Smith. Article published March 06, 2012. Last Edited March 23, 2015. https://www.thecanadianencyclopedia.ca/en/article/triticale.
[36] Bassu S, Asseng S, Richards R. Yield benefits of triticale traits for wheat under current and future climates. Field Crops Res, 2011,124:14-24.
doi: 10.1016/j.fcr.2011.05.020
[37] Estrada Campuzano G, Slafer G A, Mirallesa D J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res, 2012,128:167-179.
doi: 10.1016/j.fcr.2012.01.003
[38] Davis Knight H R, Weightman R M. The potential of triticale as a low input cereal for bioethanol production. In: Home Grown Cereals Authority Project Report (No. 434). London: Home-Grown Cereals Authority, 2008. p 40.
[39] Bilgili U, Cifci E A, Hanoglu H, Yagdi K, Acikgoz E. Yield and quality of triticale forage. J Food Agric Environ, 2009,7:556-560.
[40] Gowda M, Hahn V, Reif J C, Longin C F H, Alheit K, Maurer H P. Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crops Res, 2011,121:153-157.
doi: 10.1016/j.fcr.2010.12.003
[41] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D, Zhang A. Distribution in genome of quantitative trait loci (QTL) for yield and yield-related traits in common wheat (Triticum aestivum L.). J Integr Plant Biol, 2010,52:996-1007.
doi: 10.1111/j.1744-7909.2010.00967.x
[42] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, doi: org/10.1007/s00122-020-03562-8.
doi: 10.1007/s00122-020-03659-0 pmid: 32803378
[43] Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford M J, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019,132:2285-2294.
doi: 10.1007/s00122-019-03354-9 pmid: 31049633
[44] Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri L C, Ogbonnaya F C. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed, 2016,36:127.
doi: 10.1007/s11032-016-0541-4
[45] Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell, 2014,26:1878-1900.
doi: 10.1105/tpc.114.124388
[46] Li A, Geng S F, Zhang L Q, Liu D C, Mao L. Making the bread: insights from newly synthesized allohexaploid wheat. Mol Plant, 2015,8:847-859.
doi: 10.1016/j.molp.2015.02.016 pmid: 25747845
[47] Steige K A, Slotte T. Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Curr Opin Plant Biol, 2016,30:88-93.
doi: 10.1016/j.pbi.2016.02.006 pmid: 26943938
[48] Wendel J F, Lisch D, Hu G, Mason A S. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev, 2018,49:1-7.
doi: 10.1016/j.gde.2018.01.004 pmid: 29438956
[49] Bird K A, VanBuren R, Puzey J R, Edger P P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol, 2018,220:87-93.
doi: 10.1111/nph.15256 pmid: 29882360
[50] Bottani S, Zabet N R, Wendel J F, Veitia R A. Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci, 2018,23:393-402.
doi: 10.1016/j.tplants.2018.01.002 pmid: 29433919
[51] Mirzaghaderi G, Mason A S. Revisiting pivotal-differential genome evolution in wheat. Trends Plant Sci, 2017,22:674-684.
doi: 10.1016/j.tplants.2017.06.003 pmid: 28648886
[52] Boyle E A, Li Y I, Pritchard J K. An expanded view of complex traits: from polygenic to omnigenic. Cell, 2017,169:1177-1186.
doi: 10.1016/j.cell.2017.05.038 pmid: 28622505
[53] Sears E R. The systematics, cytology and genetics of wheat. Handb. Pflanzenzücht, 1956,2:164-187.
[54] Zuo Y, Xiang Q, Dai S, Song Z, Bao T, Hao M, Zhang L, Liu G, Li J, Liu D, Wei Y, Zheng Y, Yan Z. Development and characterization of Triticum turgidum-Aegilops comosa and T. turgidum-Ae. markgrafii amphidiploids. Genome, 2020, doi: 10.1139/gen-2019-0215.
doi: 10.1139/gen-2019-0199 pmid: 32552081
[55] Li H Y, Liu X J, Zhang M H, Feng Z, Liu D C, Ayliffe M, Hao M, Ning S Z, Yuan Z W, Yan Z H, Chen X J, Zhang L Q. Development and identification of new synthetic T. turgidum-T. monococcum amphiploids. Plant Genet Resour, 2018,16:555-563.
doi: 10.1017/S1479262118000175
[56] Liu X J, Zhang M H, Liu X, Li H Y, Hao M, Ning S Z, Yuan Z W, Liu D C, Wu B H, Chen X J, Chen W J, Zhang L Q. Molecular cytogenetic identification of newly synthetic Triticum kiharae with high resistance to stripe rust. Genet Resour Crop Evol, 2018,65:1725-1732.
doi: 10.1007/s10722-018-0649-y
[57] Zeng D, Guan J, Luo J, Zhao L, Li Y, Chen W, Zhang L, Ning S, Yuan Z, Li A, Zheng Y, Mao L, Liu D, Hao M. A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant Biol, 2020,20:97.
doi: 10.1186/s12870-020-2309-6 pmid: 32131739
[58] Mujeeb Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L.s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996,43:129-134.
doi: 10.1007/BF00126756
[59] Yang W, Liu D, Li j, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009,36:539-546.
doi: 10.1016/S1673-8527(08)60145-9
[60] Sears E R. Chromosome engineering in wheat. In: 4th Stadler Genetics Symposium, University of Missouri, Columbia, 1972. pp 23-38.
[61] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat- Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995,91:1125-1128
doi: 10.1007/BF00223930 pmid: 24170007
[62] Li L H, Dong Y S, Zhou R H, Li X Q, Li P. Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Chin J Genet, 1995,22:105-112.
[63] Li Z, Li B, Tong Y P. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics, 2009,35:451-456.
doi: 10.1016/S1673-8527(08)60062-4 pmid: 18721781
[64] Han H, Liu W, Zhang J, Zhou S, Yang X, Li X, Li L. Identification of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum derivative lines by FISH. Sci Rep, 2019,9:9712.
doi: 10.1038/s41598-019-46197-6 pmid: 31273296
[65] Martis M M, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler K G, Scholz U, Hackauf B, Korzun V, Schön C C, Doležel J, Bauer E, Mayer K F X, Stein N. Reticulate evolution of the rye genome. Plant Cell, 2013,25:3685-3698.
doi: 10.1105/tpc.113.114553
[66] Zeller F J. 1B/1R wheat-rye chromosome substitutions and translocations. In: Proceedings of the 4th International Wheat Genetics Symposium. Columbia, MO: Agricultural Experiment Station, 1973. pp 209-221.
[67] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J L, Chen Y P, Liu D J, Wang X E, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011,108:7727-7732.
doi: 10.1073/pnas.1016981108 pmid: 21508323
[68] Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y. The draft genome of Triticum urartu. Nature, 2013,496:87-90.
doi: 10.1038/nature11997
[69] Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013,496:91-95.
doi: 10.1038/nature12028
[70] IWGSC. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014,345:1251788.
doi: 10.1126/science.1251788 pmid: 25035500
[71] Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, Anderson O D, Ouyang S, Liang Y, Zimin A V, Pertea G, Qi P, Bennetzen J L, Dai X, Dawson M W, Müller H G, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer K F X, Lu F H, Bevan M W, Leroy P, Li P, You F M, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg S L, Devos K M, Dvořák J. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017,551:7681.
[72] Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977,19:585-593.
doi: 10.1139/g77-063
[73] Lukaszewski A J, Cowger C. Re-engineering of the Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination. Crop Sci, 2017,57:2590-2594.
doi: 10.2135/cropsci2017.03.0192
[74] Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci, 2020,11:252.
doi: 10.3389/fpls.2020.00252 pmid: 32211007
[75] Kole C. Wild Crop Relatives: Genomic and Breeding Resources. Cereals. Berlin, Heidelberg: Springer-Verlag, 2011.
[76] Kishii M. An update of recent use of Aegilops species in wheat breeding. Front Plant Sci, 2019,10:585.
doi: 10.3389/fpls.2019.00585 pmid: 31143197
[77] Sears E R. Genetic control of chromosome pairing in wheat. Annu Rev Genet, 1976,10:31-51.
doi: 10.1146/annurev.ge.10.120176.000335 pmid: 797311
[78] Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994,73:199-212.
doi: 10.1007/BF00036700
[79] Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 2007,15:3-19.
doi: 10.1007/s10577-006-1108-8
[1] 寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*. 小麦未减数配子基因的连锁标记及染色体区段检测[J]. 作物学报, 2016, 42(07): 984-989.
[2] 蔡得田;袁隆平;卢兴桂. 二十一世纪水稻育种新战略[J]. 作物学报, 2001, 27(01): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!