欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1966-1977.doi: 10.3724/SP.J.1006.2021.02059

• 耕作栽培·生理生化 • 上一篇    下一篇

缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响

吕腾飞1,2(), 谌洁1, 代邹2, 马鹏1, 杨志远1, 郑传刚2, 马均1,*()   

  1. 1四川农业大学水稻研究所 / 作物生理生态及栽培四川省重点实验室, 四川成都 611130
    2西昌学院农业科学学院, 四川西昌 615000
  • 收稿日期:2020-08-22 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-02-19
  • 通讯作者: 马均
  • 作者简介:E-mail: 1018914967@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0301701);国家重点研发计划项目(2017YFD0301706);国家重点研发计划项目(2018YFD0301202)

Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice

LYU Teng-Fei1,2(), SHEN Jie1, DAI Zou2, MA Peng1, YANG Zhi-Yuan1, ZHENG Chuan-Gang2, MA Jun1,*()   

  1. 1Rice Research Institute, Sichuan Agricultural University / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2College of Agricultural Science and Technology, Xichang University, Xichang 615000, Sichuan, China
  • Received:2020-08-22 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-02-19
  • Contact: MA Jun
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301701);National Key Research and Development Program of China(2017YFD0301706);National Key Research and Development Program of China(2018YFD0301202)

摘要:

为探究缓释氮肥与尿素配施对我国西南地区机插杂交籼稻碳氮积累的影响, 2016—2017年, 本研究以杂交籼稻F优498为试验材料, 设置2种机插方式和4种不同的氮肥缓、速配施方法, 调查了杂交稻植株碳氮含量和碳氮代谢关键酶活性的变化。结果表明, 与毯苗机插相比, 在水稻生育中后期, 钵苗机插提高了杂交稻幼穗和剑叶中碳氮代谢关键酶活性, 增加了植株抽穗期和成熟期碳氮积累、拔节期植株碳素含量和C/N、抽穗期和成熟期穗部C/N, 有利于提高杂交稻产量。与缓释肥一次基施相比, 缓释氮肥基施配合尿素穗肥追施(N3), 显著提高了幼穗和剑叶中碳氮代谢关键酶活性、拔节期植株的碳氮比、抽穗期和成熟期植株碳素积累, 有利于进一步提高机插杂交稻产量。另外, 机插杂交籼稻高产群体植株碳氮比在拔节期应控制在1.85~2.12, 抽穗期2.47~2.82, 成熟期3.34~3.53为宜。

关键词: 杂交籼稻, 钵苗机插, 缓速配施, 碳氮代谢, 碳氮比

Abstract:

To explore the effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation of machine-transplanted indica hybrid rice in southwestern China. A split-plot design experiments were carried out in 2016 and 2017 repeatedly, with two machine-transplanting methods as main plot, and four nitrogen treatments as subplot using F you 498 as the experimental variety. The contents of carbon (C) and nitrogen (N), and their related key enzyme activities were investigated. Results showed that, compared with the blanket-seedling rice, potted-seedling increased key enzyme activities of C and N metabolism of young panicles and flag leaves, C and N accumulation at heading and maturity stage, C accumulation and C/N at jointing stage, C/N of panicle at heading and maturity stage, resulting in the yield improvement of F you 498. Compared with 100% slow release N fertilizer (SRNF) as base, 70% SRNF as base + 30% urea as panicle (SBUP) significantly improved key enzyme activities of C and N metabolism, C/N at jointing stage, C accumulation at heading and maturity stage, leading to a further yield growth in machine-transplanting method. Meanwhile, this study suggested that C/N of the high-yield groups of machine-transplanting hybrid rice should be controlled 1.85-2.12, 2.47-2.82, and 3.34-3.53 at jointing, heading and maturity stages, respectively.

Key words: hybrid indica rice, potted-seedling machine-transplantation, slow and rapid nitrogen fertilizer combined application, carbon and nitrogen metabolism, C/N

图1

生长期间气象资料"

表1

不同机插方式下杂交稻主要生育时期(月/日)"

年份
Year
育秧方式
Seedling-raising
method
播种期
Seeding date
移栽期
Transplanting date
拔节期
Elongation date
抽穗期
Heading date
成熟期
Maturity date
2016 钵苗Potted seedling 3/20 4/17 6/6 7/4 8/22
毯苗Blanket seedling 3/20 4/17 6/7 7/8 8/24
2017 钵苗Potted seedling 3/25 4/23 6/2 7/8 8/18
毯苗Blanket seedling 3/25 4/23 6/4 7/10 8/20

表2

不同生育时期各器官全碳积累量"

年份
Year
处理
Treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf

Panicle
茎鞘
Stem-sheath
叶片
Leaf

Panicle
2016 M1N0 0.48±0.02 d 0.36±0.01 d 1.80±0.02 d 0.77±0.01 c 0.62±0.01 c 1.10±0.02 c 0.42±0.01 b 3.33±0.06 d
M1N1 0.90±0.02 b 0.78±0.02 b 3.08±0.02 c 1.50±0.01 a 0.94±0.03 b 2.04±0.03 a 0.89±0.02 a 5.20±0.04 b
M1N2 1.15±0.03 a 0.85±0.03 a 3.34±0.03 a 1.38±0.01 b 1.01±0.01 a 1.87±0.04 b 0.87±0.01 a 5.03±0.05 c
M1N3 0.81±0.03 c 0.69±0.02 c 3.23±0.02 b 1.56±0.06 a 1.05±0.04 a 1.97±0.01 a 0.88±0.01 a 5.40±0.06 a
M2N0 0.49±0.01 c 0.41±0.01 c 1.52±0.05 c 0.59±0.02 d 0.59±0.02 c 1.09±0.03 d 0.52±0.01 c 3.01±0.06 c
M2N1 0.73±0.02 b 0.66±0.02 b 2.49±0.03 b 1.47±0.05 b 0.84±0.02 b 1.94±0.01 c 1.00±0.05 ab 4.78±0.02 a
M2N2 0.88±0.01 a 0.82±0.01 a 2.54±0.01 b 1.38±0.04 c 0.86±0.01 b 2.03±0.03 b 0.95±0.02 b 4.44±0.04 b
M2N3 0.75±0.02 c 0.67±0.02 c 2.83±0.03 a 1.63±0.05 a 0.99±0.03 a 2.15±0.03 a 1.04±0.03 a 4.89±0.09 a
F-value M 496.27** 9.82 ns 184.99** 3.54 ns 25.34* 21.74* 31.86* 278.29**
N 243.14** 258.67** 102.33** 625.72** 196.40** 469.31** 249.69** 510.68**
M×N 18.57** 8.73** 32.36** 10.42** 4.48* 10.86** 1.40 ns 1.98 ns
2017 M1N0 0.46±0.01 c 0.29±0.01 c 1.96±0.04 c 0.61±0.02 c 0.57±0.02 c 1.36±0.01 c 0.46±0.01 b 3.26±0.06 c
M1N1 0.81±0.01 b 0.71±0.02 b 3.37±0.03 bc 1.30±0.01 b 0.94±0.01 b 1.99±0.02 b 0.92±0.02 a 5.32±0.05 a
M1N2 1.00±0.02 a 0.80±0.03 a 3.41±0.09 ab 1.27±0.02 b 1.01±0.03 a 2.04±0.06 b 0.93±0.03 a 5.13±0.06 b
M1N3 0.82±0.02 b 0.73±0.01 b 3.54±0.05 a 1.59±0.07 a 1.04±0.03 a 2.16±0.02 a 0.88±0.03 a 5.40±0.04 a
M2N0 0.39±0.02 c 0.31±0.01 c 1.82±0.06 c 0.57±0.02 d 0.52±0.01 c 1.16±0.04 d 0.55±0.02 c 3.11±0.07 c
M2N1 0.81±0.03 a 0.71±0.01 ab 2.84±0.08 b 1.31±0.03 b 0.80±0.03 b 1.91±0.01 c 1.06±0.03 a 5.04±0.04 a
M2N2 0.75±0.02 b 0.74±0.03 a 2.96±0.06 ab 1.14±0.01 c 0.80±0.02 b 1.98±0.04 b 0.96±0.01 b 4.75±0.09 b
M2N3 0.76±0.01 ab 0.68±0.01 b 3.05±0.06 a 1.44±0.01 a 0.90±0.01 a 2.25±0.02 a 1.10±0.02 a 5.00±0.11 a
F-value M 61.45* 16.16 ns 152.28** 98.20* 341.10** 19.47* 153.27** 64.83*
N 262.02** 253.67** 231.54** 436.98** 114.32** 521.67** 238.17** 353.74**
M×N 18.29** 2.64 ns 3.99* 3.90* 3.61* 10.27** 6.07** 1.25 ns

表3

不同生育时期时期各器官碳氮比"

年份
Year
处理
Treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf

Panicle
茎鞘
Stem-sheath
叶片
Leaf

Panicle
2016 M1N0 4.94±0.01 a 2.05±0.02 a 5.60±0.04 a 1.86±0.04 a 3.21±0.07 a 4.74±0.08 b 3.01±0.06 a 3.29±0.05 ab
M1N1 3.16±0.03 c 1.33±0.02 c 3.87±0.03 d 1.37±0.03 c 3.00±0.09 b 5.12±0.02 a 2.66±0.03 b 3.23±0.01 bc
M1N2 3.64±0.01 b 1.38±0.02 bc 5.13±0.05 b 1.49±0.01 b 3.31±0.07 a 5.22±0.06 a 2.94±0.03 a 3.35±0.05 a
M1N3 3.67±0.01 b 1.42±0.01 b 4.41±0.04 c 1.35±0.03 c 2.57±0.02 c 4.62±0.04 b 2.98±0.05 a 3.21±0.04 c
M2N0 3.33±0.07 a 1.58±0.02 a 5.80±0.11 a 1.69±0.02 a 3.24±0.09 a 4.79±0.06 a 3.13±0.01 a 3.30±0.03 b
M2N1 2.48±0.07 d 1.20±0.02 d 4.34±0.06 c 1.44±0.02 c 2.59±0.06 d 4.40±0.16 c 2.82±0.02 c 3.40±0.03 a
M2N2 2.84±0.02 c 1.37±0.01 b 5.20±0.10 b 1.63±0.01 b 3.10±0.07 b 4.60±0.05 b 2.96±0.02 b 3.33±0.02 ab
M2N3 3.09±0.02 b 1.28±0.02 c 3.88±0.21 d 1.46±0.02 c 2.74±0.08 c 4.60±0.04 b 2.32±0.03 d 3.40±0.01 a
F-value M 820.81** 1035.33** 7.51 ns 19.32* 10.26 ns 553.09** 19.29* 12.54 ns
N 383.11** 295.37** 97.99** 349.17** 130.21** 4.07* 44.80** 0.79 ns
M×N 70.94** 49.58** 7.04** 57.75** 24.63** 10.58** 45.38** 4.68*
2017 M1N0 4.89±0.08 a 1.62±0.03 a 6.02±0.08 a 1.69±0.02 a 3.09±0.03 b 5.60±0.14 a 2.72±0.04 c 3.15±0.04 b
M1N1 2.61±0.03 d 1.15±0.01 d 4.00±0.01 c 1.27±0.02 d 3.12±0.07 b 5.39±0.01 b 2.40±0.02 d 3.11±0.01 b
M1N2 2.80±0.02 c 1.21±0.02 c 5.91±0.12 a 1.45±0.01 b 3.40±0.07 a 5.58±0.07 a 3.19±0.04 a 3.39±0.03 a
M1N3 3.03±0.04 b 1.31±0.02 b 4.95±0.11 b 1.41±0.01 c 3.04±0.07 b 4.90±0.05 c 2.85±0.06 b 3.11±0.05 b
M2N0 3.97±0.02 a 1.45±0.01 a 7.24±0.06 a 1.97±0.01 a 2.98±0.06 b 4.80±0.10 b 3.26±0.08 a 3.39±0.01 ab
M2N1 2.61±0.06 b 1.18±0.01 b 5.44±0.02 c 1.37±0.01 b 2.72±0.02 c 4.47±0.03 c 2.87±0.03 b 3.42±0.03 ab
M2N2 2.35±0.03 c 1.18±0.01 b 6.08±0.05 b 1.28±0.01 c 3.14±0.03 a 4.54±0.10 c 3.16±0.04 a 3.50±0.06 a
M2N3 2.69±0.03 b 1.20±0.01 b 4.76±0.03 d 1.35±0.01 b 2.88±0.06 b 5.04±0.04 a 2.61±0.02 c 3.34±0.04 b
F-value M 883.50** 114.50** 86.30* 51.46* 17.44 ns 57.94* 48.17* 106.69**
N 660.08** 167.54** 353.39** 908.80** 21.97** 5.65* 49.16** 11.58**
M×N 30.71** 10.37** 65.91** 156.94** 3.77* 29.57** 29.48** 2.55 ns

表4

主要生育时期植株全碳、全氮积累量和碳氮比"

年份
Year
处理
Treatment
全碳积累量 C accumulation (t hm-2) 全氮积累量 N accumulation (kg hm-2) 碳氮比 C/N 产量
Yield (kg hm-2)
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
2016 M1N0 0.84±0.02 d 3.19±0.02 d 4.84±0.08 c 27.20±0.53 d 93.07±1.33 d 138.24±1.25 d 3.07±0.02 a 3.43±0.05 a 3.50±0.05 b 7647.32±191.73 c
M1N1 1.68±0.04 b 5.53±0.06 c 8.13±0.05 a 87.08±2.15 b 220.60±0.81 b 234.28±1.62 b 1.93±0.02 c 2.51±0.03 c 3.47±0.01 bc 12,057.53±175.03 b
M1N2 2.00±0.04 a 5.73±0.03 b 7.77±0.02 b 93.50±1.37 a 188.59±0.78 c 215.34±0.83 c 2.14±0.01 b 3.04±0.02 b 3.61±0.02 a 11,665.74±182.51 b
M1N3 1.50±0.04 c 5.84±0.08 a 8.25±0.07 a 70.60±2.14 c 229.21±3.46 a 240.34±0.49 a 2.12±0.01 b 2.55±0.01 c 3.43±0.02 c 12,608.57±197.97 a
M2N0 0.90±0.02 c 2.71±0.08 c 4.62±0.05 d 40.71±0.64 d 79.77±1.83 d 130.67±1.49 d 2.20±0.01 a 3.40±0.05 a 3.53±0.02 a 7066.64±123.93 c
M2N1 1.40±0.04 b 4.80±0.06 b 7.72±0.07 b 84.97±0.86 b 191.60±3.37 b 220.27±1.42 b 1.64±0.04 c 2.50±0.02 c 3.50±0.01 a 10,830.51±272.57 b
M2N2 1.69±0.01 a 4.78±0.05 b 7.42±0.07 c 90.35±0.71 a 161.51±1.05 c 209.40±2.16 c 1.88±0.01 b 2.96±0.02 b 3.54±0.01 a 10,501.40±159.28 b
M2N3 1.43±0.01 b 5.45±0.06 a 8.08±0.10 a 76.95±0.77 c 221.13±5.70 a 235.36±4.20 a 1.85±0.01 b 2.47±0.04 c 3.43±0.02 b 11,410.96±151.36 a
F-value M 266.22** 108.62** 89.41* 20.50* 134.29** 225.03** 846.21** 18.31 ns 0.01 ns 272.61**
N 362.85** 254.01** 961.60** 787.38** 346.68** 908.66** 865.00** 436.76** 9.75** 267.08**
M×N 16.72** 26.12** 1.18 ns 17.72** 9.42** 1.71 ns 139.52** 0.80 ns 1.69 ns 1.43 ns
2017 M1N0 0.75±0.01 c 3.14±0.07 c 5.08±0.08 c 27.30±0.11 d 87.08±2.29 c 144.60±3.16 c 2.73±0.02 a 3.61±0.05 a 3.51±0.02 b 7336.30±169.64 d
M1N1 1.52±0.02 b 5.61±0.03 b 8.23±0.05 ab 92.64±1.55 b 216.92±1.92 a 246.55±1.97 a 1.64±0.01 d 2.59±0.01 d 3.34±0.01 c 11,636.94±176.42 b
M1N2 1.80±0.05 a 5.69±0.12 b 8.10±0.14 b 102.02±2.36 a 174.79±4.52 b 216.91±1.99 b 1.77±0.01 c 3.25±0.03 b 3.73±0.04 a 11,191.95±256.75 c
M1N3 1.56±0.03 b 6.16±0.12 a 8.44±0.03 a 83.41±2.45 c 218.62±4.53 a 249.01±3.08 a 1.87±0.03 b 2.82±0.01 c 3.39±0.05 c 12,178.10±187.51 a
M2N0 0.70±0.03 b 2.92±0.06 c 4.82±0.09 d 31.39±1.00 c 71.90±1.06 d 132.85±2.29 d 2.24±0.02 a 4.05±0.02 a 3.63±0.01 a 6889.11±145.79 c
M2N1 1.52±0.04 a 4.96±0.10 b 8.01±0.06 b 91.24±1.36 a 177.83±2.73 b 227.15±0.75 b 1.66±0.02 b 2.79±0.02 c 3.53±0.02 b 10,794.88±111.85 ab
M2N2 1.49±0.05 a 4.90±0.09 b 7.69±0.09 c 94.93±3.01 a 162.98±2.69 c 210.06±4.96 c 1.57±0.02 c 3.01±0.01 b 3.66±0.04 a 10,527.79±198.08 b
M2N3 1.44±0.03 a 5.39±0.08 a 8.34±0.13 a 84.62±0.82 b 202.21±3.34 a 236.07±2.30 a 1.70±0.01 b 2.67±0.01 d 3.53±0.02 b 11,242.41±171.13 a
F-value M 35.45* 178.71** 45.00* 0.60 ns 215.94** 654.57** 527.78** 18.37 ns 18.26 ns 52.26*
N 346.16** 417.44** 722.79** 662.11** 904.02** 551.82** 750.06** 110.09** 28.25** 233.49**
M×N 9.34** 4.71* 1.76 ns 3.74* 10.11** 1.61 ns 53.85** 102.91** 6.30** 0.61 ns

图2

幼穗分化期幼穗中GOGAT (谷氨酸合成酶)、GS (谷氨酰胺合成酶)、SPS (蔗糖磷酸合成酶)和SS (蔗糖合成酶)活性 PBPD: 一次枝梗原基分化期; SBSPD: 二次枝梗和颖花原基分化期。其他缩写同表2。不同小写字母表示差异达到0.05显著水平。"

图3

抽穗后剑叶GOGAT(谷氨酸合成酶)、GS(谷氨酰胺合成酶)、SPS (蔗糖磷酸合成酶)和SS (蔗糖合成酶)活性 其他缩写同表2。不同小写字母表示差异达到0.05显著水平。"

[1] Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands. J Clean Prod, 2018, 171:1020-1030.
doi: 10.1016/j.jclepro.2017.10.110
[2] Wu W, Nie L X, Liao Y C, Shah F, Cui K H, Wang Q, Lian Y, Huang J L. Toward yield improvement of early-season rice: other options under double rice-cropping system in central China. Eur J Agron, 2013, 45:75-86.
doi: 10.1016/j.eja.2012.10.009
[3] Khush G. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59:1-6.
doi: 10.1007/s11103-005-2159-5
[4] Peng S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agron Sin, 2016, 42:313-319.
doi: 10.3724/SP.J.1006.2016.00313
[5] Huang M, Chen J N, Cao F B, Zou Y B. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res, 2018, 221:333-338.
doi: 10.1016/j.fcr.2017.06.028
[6] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2):39-44.
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2):39-44 (in Chinese with English abstract).
[7] 胡雅杰, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 刘国林, 陆秀军, 刘国涛, 朱嘉炜. 适宜机插株行距提高不同穗型粳稻产量. 农业工程学报, 2013, 29(14):33-44.
Hu Y J, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Liu G L, Lu X J, Liu G T, Zhu J W. Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices. Trans CSAE, 2013, 29(14):33-44 (in Chinese with English abstract).
[8] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47:865-879.
Hu Y J, Xing Z P, Gong J L, Liu G T, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Sci Agric Sin, 2014, 47:865-879 (in Chinese with English abstract).
[9] 杨松, 贾一磊, 王进友, 罗来君, 高雯雯. 钵苗机插杂交籼稻的优势及其精确定量栽培技术研究. 大麦与谷类科学, 2019, 36(6):16-21.
Yang S, Jia Y L, Wang J Y, Luo L J, Gao W W. Research on the advantages and precise quantitative cultivation technologies of the indica hybrid rice whose seedlings are potted and mechanically transplanted. Barl Cer Sci, 2019, 36(6):16-21 (in Chinese with English abstract).
[10] Cheng S H, Zhuang J Y, Fan Y Y, Jing H D, Li Y C. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100:959-966.
doi: 10.1093/aob/mcm121
[11] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47:1273-1289.
Zhang H C, Gong J L, Research status and development discussion on high-yielding agronomy of mechanized planting rice in china. Sci Agric Sin, 2014, 47:1273-1289 (in Chinese with English abstract).
[12] 李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国农业科学, 2017, 31:265-277.
Li Y H, Wang H Y, Lyu T F, Zhang S W, Jiang M J, He Q L, Sun Y J, Ma J. Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages. Sci Agric Sin, 2017, 31:265-277 (in Chinese with English abstract).
[13] 吴文革, 张健美, 周永进, 陈刚, 许有尊, 李胜群, 严文学, 高尚勤. 江淮水稻钵苗机插生育特性与高产栽培关键技术研究. 中国稻米, 2015, 21(4):118-124.
Wu W G, Zhang J M, Zhou Y J, Chen G, Xu Y Z, Li S Q, Yan W X, Gao S Q. Study on growth and development characteristics and high-yielding cultivation techniques of rice with nutrition bowl mechanical transplanting in Jianghuai area. China Rice, 2015, 21(4):118-124 (in Chinese with English abstract).
[14] 张军, 王兴龙, 石广跃, 米长生, 郭保卫, 李必忠, 方书亮, 陆海空, 刘忠红, 张永进, 庚跃东. 不同机栽方式下杂交稻产量及其形成特征比较. 农业工程学报, 2015, 31(10):84-91.
Zhang J, Wang X L, Shi G Y, Mi C S, Guo B W, Li B Z, Fang S L, Lu H K, Liu Z H, Zhang Y J, Geng Y D. Yield and its formation of hybrid rice under different mechanical transplanted methods. Trans CSAE, 2015, 31(10):84-91 (in Chinese with English abstract).
[15] 胡雅杰, 曹伟伟, 钱海军, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 高辉, 沙安勤, 周有炎, 刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015, 41:743-757.
Hu Y J, Cao W W, Qian H J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Gao H, Sha A Q, Zhou Y Y, Liu G L. Effect of planting density of mechanically transplanted pot seedlings on yield, plant type and lodging resistance in rice with different panicle types. Acta Agron Sin, 2015, 41:743-757 (in Chinese with English abstract).
[16] 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002, 16:261-264.
Jiang L G, Cao W X. Physiological mechanism and approaches for efficient nitrogen utilization in rice. Chin J Rice Sci, 2002, 16:261-264 (in Chinese with English abstract).
[17] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43:730-740.
Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle. Acta Agron Sin, 2017, 43:730-740 (in Chinese with English abstract).
[18] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Res, 2014, 169:30-38.
doi: 10.1016/j.fcr.2014.08.015
[19] 陈贤友, 吴良欢, 李金先, 应金耀. 新型控释肥对水稻产量与氮肥利用率的影响探讨. 土壤通报, 2010, 41(1):133-137.
Chen X Y, Wu L H, Li J X, Ying J Y. Effects of new controlled release fertilizers on rice yield and nitrogen use efficiency. Chin J Soil Sci, 2010, 41(1):133-137 (in Chinese with English abstract).
[20] 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19:808-815.
Li M, Guo X S, Ye S Y, Liu F, Yuan M M, Huang Y D. Effects of sulfur- and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice. Plant Nutr Fert Sci, 2013, 19:808-815 (in Chinese with English abstract).
[21] 张敬昇, 李冰, 王昌全, 罗晶, 古珺, 龙思帆, 何杰, 向毫, 尹斌. 控释掺混尿素对稻麦产量及氮素利用率的影响. 中国水稻科学, 2017, 31:288-298.
Zhang J S, Li B, Wang C Q, Luo J, Gu J, Long S F, He J, Xiang H, Yin B. Effects of controlled release blend bulk urea on the yield and nitrogen use efficiency of wheat and rice. Chin J Rice Sci, 2017, 31:288-298 (in Chinese with English abstract).
[22] 孙克刚, 杜君, 孙克振, 和爱玲, 张运红. 控释尿素与化肥配施对水稻产量及氮素利用率的影响. 磷肥与复肥, 2015, 30(10):48-50.
Sun K G, Du J, Sun K Z, He A L, Zhang Y H. Effect of combined application controlled release urea and chemical fertilizer on yield of rice and utilization rate of nitrogen. Phosph Comp Fert, 2015, 30(10):48-50 (in Chinese with English abstract).
[23] 李酉开. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983. pp 79, 272.
Li Y K. Conventional Analytical Methods for Soil Agricultural Chemistry. Beijing: Science Press, 1983. pp 79, 272 (in Chinese).
[24] Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrouse and hexose metabolism indevelopment kernels of two inbreds of maize. Plant Physiol, 1988, 86:1013-1019.
doi: 10.1104/pp.86.4.1013
[25] Mei T, Lee Q, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79:852-855.
doi: 10.1104/pp.79.3.852
[26] Umemoto T, Nakamura Y, Ishikura M. Effect of grain location of the panicle of actives involve in starch synthesis in rice endosperm. Phytochemistry, 1994, 36:843-847.
doi: 10.1016/S0031-9422(00)90448-5
[27] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006, 96:455-465.
doi: 10.1016/j.fcr.2005.09.001
[28] Lu Y H, Watanabe A, Kimura M. Input and distribution of photosynthesized carbon in a flooded soil. Global Biogeochem Cycl, 2002, 16:321-328.
[29] 刘利, 雷小龙, 黄光忠, 刘代银, 任万军. 机械化播栽对杂交稻氮素积累分配及碳氮比的影响. 植物营养与肥料学报, 2014, 20:831-844
Liu L, Lei X L, Huang G Z, Liu D Y, Ren W J. Influences of mechanical sowing and transplanting on nitrogen accumulation, distribution and C/N of hybrid rice cultivars. J Plant Nutr Fert, 2014, 20:831-844 (in Chinese with English abstract).
[30] 林瑞余, 蔡碧琼, 柯庆明, 蔡向阳, 林文雄. 不同水稻品种产量形成过程的固碳特性研究. 中国农业科学, 2006, 39:2441-2448.
Lin R Y, Cai B Q, Ke Q M, Cai X Y, Lin W X. Characteristics of carbon fixation in different rice cultivars during yield formation process. Sci Agric Sin, 2006, 39:2441-2448 (in Chinese with English abstract).
[31] 胡雅杰, 吴培, 朱明, 邢志鹏, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 张洪程. 钵苗机插水稻氮素吸收与利用特征. 中国水稻科学, 2018, 32:257-264.
Hu Y J, Wu P, Zhu M, Xing Z P, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Zhang H C. Characteristics of nitrogen uptake and utilization of mechanically-transplanted pot-tray-nursed rice seedlings. Chin J Rice Sci, 2018, 32:257-264 (in Chinese with English abstract)
[32] 薛利红, 杨林章, 范小晖. 基于碳氮代谢的水稻氮含量及碳氮比光谱估测. 作物学报, 2006, 32:430-435.
Xue L H, Yang L Z, Fan X H. Estimation of nitrogen content and C/N in rice leaves and plant with canopy reflectance spectra. Acta Agron Sin, 2006, 32:430-435 (in Chinese with English abstract).
[33] 阮新民, 施伏芝, 罗志祥. 施氮对高产杂交水稻生育后期叶碳氮比与氮素吸收利用的影响. 中国土壤与肥料, 2011, 2:35-38.
Ruan X M, Shi F Z, Luo Z X. Effects of nitrogen application on the leaf of C/N and nitrogen uptake and utilization at later developmental stages in different high yield hybrid rice varieties. Soil Fert Sci China, 2011, 2:35-38 (in Chinese with English abstract).
[34] Kobayasi K, Horie T. The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis-branches in rice. Jpn J Crop Sci, 1994, 63:193-199.
doi: 10.1626/jcs.63.193
[35] Kobayasi K, Yamane K, Imaki T. Effect of non-structural carbohydrates on spikelets differentiation in rice. Plant Prod Sci, 2001, 4:9-14.
doi: 10.1626/pps.4.9
[36] Ansari T H, Yamamoto Y, Yoshida T, Miyazaki A, Wang Y L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinats of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Sci Plant Nutr, 2003, 49:433-444.
doi: 10.1080/00380768.2003.10410029
[37] 邱泽生, 刘捷平, 黄勤妮, 丁以珊, 张承谦, 王沅. 冬小麦的小花发育与碳氮代谢的关系. 作物学报, 1980, 6:139-146.
Qiu Z S, Liu J P, Huang Q N, Ding Y S, Zhang C Q, Wang Y. The relation between floret development and carbon-nitrogen metabolism in winter wheat. Acta Agron Sin, 1980, 6:139-146 (in Chinese with English abstract).
[38] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43:407-419.
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017, 43:407-419 (in Chinese with English abstract).
[39] Krapp A, Saliba-Colombani V, Daniel-Vedele F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. Photosyn Res, 2005, 83:251-263.
doi: 10.1007/s11120-004-3196-7
[40] 田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34:101-103.
Tian J C, Chen J S, Wang Y X, Zhang Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Sci Agric Sin, 2001, 34:101-103 (in Chinese with English abstract).
[41] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42(1):53-62.
Xu G L, Liu J, Liang C G, Wang Y, Ding C B, Li T. Changes of nitrogen metabolism enzyme activities and protein content in response to low light during the seed filling stage in rice. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42(1):53-62 (in Chinese with English abstract).
[42] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Laforgue T T, Quilleré I, Coque M, Gallais A, Moro G M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
doi: 10.1105/tpc.106.042689
[43] Hirel B. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125:1258-1270.
pmid: 11244107
[44] 杜君, 孙克刚, 雷利君, 和爱玲, 张运红, 孙克振. 控释尿素与普通尿素配施对水稻氮代谢关键酶活性及产质量的影响. 河南农业科学, 2016, 45(3):67-72.
Du J, Sun K G, Lei L J, He A L, Zhang Y H, Sun K Z. Effects of combined application of controlled release urea and common urea on activities of key enzymes related with nitrogen metabolism, yield and quality of rice. J Henan Agric Sci, 2016, 45(3):67-72 (in Chinese with English abstract).
[45] 阮新民, 施伏芝, 从夕汉, 罗志祥. 氮高效利用水稻碳氮代谢物含量的变化特征. 作物杂志, 2015, (6):76-83.
Ruan X M, Shi F Z, Cong X H, Luo Z X. Characteristics of carbon and nitrogen metabolites of rice genotype with high nitrogen use efficiency. Crops, 2015, (6):76-83 (in Chinese with English abstract).
[1] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[2] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[3] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应[J]. 作物学报, 2020, 46(9): 1430-1447.
[4] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[5] 邢志鹏,朱明,吴培,钱海军,曹伟伟,胡雅杰,郭保卫,魏海燕,许轲,霍中洋,戴其根,张洪程*. 稻麦两熟制条件下钵苗机插方式对不同类型水稻品种米质的影响[J]. 作物学报, 2017, 43(04): 581-595.
[6] 孙永健,孙园园,严奉君,杨志远,徐徽,李玥,王海月,马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响[J]. 作物学报, 2017, 43(03): 407-419.
[7] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(03): 420-431.
[8] 罗德强,王绍华,江学海,李刚华,周维佳,李敏,姬光梅,丁艳锋,凌启鸿,刘正辉. 贵州省高原山区杂交籼稻不同产量水平群体的特征[J]. 作物学报, 2016, 42(12): 1817-1826.
[9] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,戴其根,霍中洋,许轲,林昌明,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及氮素吸收利用的影响[J]. 作物学报, 2016, 42(11): 1666-1676.
[10] 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776.
[11] 田青兰,李培程,刘利,张强,任万军. 四川不同生态区高产栽培条件下的杂交籼稻的稻米品质[J]. 作物学报, 2015, 41(08): 1257-1268.
[12] 胡雅杰,曹伟伟,钱海军,邢志鹏,张洪程,戴其根,霍中洋,许轲,魏海燕,郭保卫,高辉,沙安勤,周有炎,刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响[J]. 作物学报, 2015, 41(05): 743-757.
[13] 胡雅杰,朱大伟,钱海军,曹伟伟,邢志鹏,张洪程,周有炎,陈厚存,汪洪洋,戴其根,霍中洋,许轲,魏海燕,郭保卫. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨[J]. 作物学报, 2014, 40(11): 2016-2027.
[14] 雷小龙,刘利,刘波,黄光忠,马荣朝,任万军. 杂交籼稻机械化种植的分蘖特性[J]. 作物学报, 2014, 40(06): 1044-1055.
[15] 雷小龙,刘利,刘波,黄光忠,郭翔,马荣朝,任万军. 机械化种植对杂交籼稻F优498产量构成与株型特征的影响[J]. 作物学报, 2014, 40(04): 719-730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!