• •
朱锦程1,杨秋华1,程李香1,李文丽2,石明明3,李惠霞3,*,张峰1,*
ZHU Jin-Cheng1,YANG Qiu-Hua1,CHENG Li-Xiang1,LI Wen-Li2,SHI Ming-Ming3,LI Hui-Xia3,*,ZHANG Feng1,*
摘要:
筛选优异的抗南方根结线虫马铃薯材料,分析其生理抗性,为抗南方根结线虫马铃薯品种选育提供理论依据,丰富抗线虫种质资源。利用根结线虫通用引物D2A/D3B及南方根结线虫特异性引物Inc-K14-F/Inc-K14-R对供试线虫材料进行分子鉴定。54份马铃薯野生种渐渗系和31份普通栽培种通过室内盆栽接种南方根结线虫,35 d后测定根系南方根结线虫的卵块数量和根结数量,计算卵块指数(egg index, EI)、根结指数(gall index, GI)及病情指数(disease index, DI),用于抗病性评价;初步筛选抗病种质后,以未接种南方根结线虫的抗(感)材料为对照,分别在线虫侵入根系的第3天、第7天和第35天,测定根系木质素、茉莉酸及水杨酸含量,初步解析抗南方根结线虫马铃薯材料根系的生理反应。结果表明,85份马铃薯材料根系卵块数量、根结数量、卵块指数和根结指数差异显著,依病情指数将其分为高抗(1<DI≤2)、中感(4<DI≤5)、感病(5<DI≤6)和高感(DI >6) 4种类型。其中,野生种渐渗系232-8为高抗材料(DI=1.01);232-9 (DI=4.02)、315-53(DI=4.09)和390-10 (DI=4.33)为中感材料;364-3 (DI=5.17)、19-2 (DI=5.28)、53-1 (DI=5.88)和317-8 (DI=5.88)为感病材料;其余77份材料为高感材料,DI范围为6.13~74.26,其中天薯12号的DI最高(74.26)。接种南方根结线虫后,232-8根系木质素、茉莉酸及水杨酸含量显著高于天薯12号,其木质素在接种35 d后含量达到最高(476.18 mg g?1),茉莉酸及水杨酸含量在接种7 d时达到最高,分别为10.80 ng g?1和1623.15 ng g?1。马铃薯野生种渐渗系232-8为抗南方根结线虫材料,其根系木质素、茉莉酸及水杨酸含量在线虫侵入后显著升高,这可能是其形成生理抗性的重要原因。
[1] Manrique L A. Constraints for potato production in the tropics. J Plant Nutr, 1993, 16: 2075–2120. [2] Berg R H, Fester T, Taylor C G. Development of the root-knot nematode feeding cell. Cell Biology of Plant Nematode Parasitism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. pp 115–152. [3] Stucky T, Dahlin P. Fluopyram: optimal application time point and planting hole treatment to control Meloidogyne incognita. Agronomy, 2022, 12: 1576. [4] Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. Plant Cell, 1996, 8: 1735–1745. [5] Khanam S, Bauters L, Singh R R, Verbeek R, Haeck A, Sultan S M D, Demeestere K, Kyndt T, Gheysen G. Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode Ditylenchus angustus. Mol Plant Pathol, 2018, 19: 1391–1402. [6] Bonello P, Blodgett J T. Pinus nigra–Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol, 2003, 63: 249–261. [7] Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X B, Zhao P X, Dixon R A. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010, 11: 829–846. [8] Grant M R, Jones J D G. Hormone (dis)harmony moulds plant health and disease. Science, 2009, 324: 750–752. [9] Pieterse C M J, Leon-Reyes A, Van der Ent S, Van Wees S C M. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308–316. [10] Foroud N A, Ouellet T, Laroche A, Oosterveen B, Jordan M C, Ellis B E, Eudes F. Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathol, 2012, 61: 296–314. [11] Züst T, Agrawal A A. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol, 2017, 68: 513–534. [12] 武超, 刘贤文, 张炜, 王琼, 郭华春. 马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果. 作物学报, 2020, 46: 1456–1463. Wu C, Liu X W, Zhang W, Wang Q, Guo H C. Control effects of different potato varieties(lines) and rice-potato rotation system on root-knot nematode. Acta Agron Sin, 2020, 46: 1456–1463 (in Chinese with English abstract). [13] van der Vossen E, Sikkema A, te Lintel Hekkert B, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J, 2003, 36: 867–882. [14] 王江岭, 张建成, 顾建锋. 单条线虫DNA提取方法. 植物检疫, 2011, 25(2): 32–35. Wang J L, Zhang J C, Gu J F. Method of extract DNA from a single nematode. Plant Quar, 2011, 25(2): 32–35 (in Chinese with English abstract). [15] Randig O, Bongiovanni M, Carneiro R M D G, Castagnone-Sereno P. Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 2002, 45: 862–870. [16] 中华人民共和国农业行业标准, 中华人民共和国农业农村部. 马铃薯抗南方根结线虫病鉴定技术规程: NY/T 3623—2020. 北京: 中国农业出版社, 2020. Agricultural Industry Standards of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical Regulations for Identification of Potato Resistance to Southern Root-knot Nematode Disease: NY/T 3623—2020. Beijing: China Agriculture Press, 2020 (in Chinese). [17] Bybd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol, 1983, 15: 142–143. [18] Powell N T. Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi. Phytopathology, 1971, 61: 1332. [19] Janssen G J W, Van Norel A, Verkerk-Bakker B, Janssen R. Intra-and interspecific variation of root-knot nematodes, Meloidogyne spp., with regard to resistance in wild tuber-bearing Solanum species. Fundam Appl Nematol, 1997, 20: 449–458. [20] Holbein J, Grundler F M W, Siddique S. Plant basal resistance to nematodes: an update. J Exp Bot, 2016, 67: 2049–2061. [21] Zhao J L, Mejias J, Quentin M, Chen Y P, de Almeida-Engler J, Mao Z C, Sun Q H, Liu Q, Xie B Y, Abad P, et al. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. New Phytol, 2020, 228: 1417–1430. [22] Fairfax K C, Vermeire J J, Harrison L M, Bungiro R D, Grant W, Husain S Z, Cappello M. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int J Parasitol, 2009, 39: 1561–1571. [23] Boiteux L S, Charchar J M. Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed, 1996, 115: 198–200. [24] Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz S B. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One, 2013, 8: e64586. [25] Jagdale S, Rao U, Giri A P. Effectors of root-knot nematodes: an arsenal for successful parasitism. Front Plant Sci, 2021, 12: 800030. [26] Zhang J, Zhou J M. Plant immunity triggered by microbial molecular signatures. Mol Plant, 2010, 3: 783–793. [27] Nguyen Q M, Iswanto A B B, Son G H, Kim S H. Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. Int J Mol Sci, 2021, 22: 4709. [28] Prior A, Jones J T, Blok V C, Beauchamp J, McDermott L, Cooper A, Kennedy M W. A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochem J, 2001, 356: 387–394. [29] Liu L J, Sonbol F M, Huot B, Gu Y N, Withers J, Mwimba M, Yao J, He S Y, Dong X N. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun, 2016, 7: 13099. [30] Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics, 2015, 16: 272. [31] Abad P, Favery B, Rosso M N, Castagnone-Sereno P. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol, 2003, 4: 217–224. [32] Macharia T N, Bellieny-Rabelo D, Moleleki L N. Transcriptome profiling of potato (Solanum tuberosum L.) responses to root-knot nematode (Meloidogyne javanica) infestation during a compatible interaction. Microorganisms, 2020, 8: 1443. |
No related articles found! |
|