• •
王克晶,李向华*
WANG Ke-Jing,LI Xiang-Hua*
摘要:
烟豆(Glycine tabacina)和短绒野大豆(G.tomentella)是大豆属(Glycine Willd.)多年生亚属(Subgenus Glycine)仅有的2个分布于我国的物种,其分布仅限于我国大陆东南沿海的海岸地带,我国是其世界分布的北界。这2个物种在大豆育种上具有潜在的重要利用价值,新颁布的《国家重点保护野生植物新名录》中同一年生野大豆(Glycine soja)一起被列入国家二级保护植物。然而,目前这2个物种的生存状况和濒危性还不清楚,它们是否需要人工介入保护亟需一套相对科学和客观的评估系统进行判定。本研究实地调查了我国这2种多年生植物分布区域的福建和广东省海岸地带32个县(市、区)的群落生态特征,使用区域分布程度、区域种群频度、种群面积、种群个体密度和群落内部演替过程中潜在胁迫的物种数目等5项与物种生存密切相关的重要生态指标针对我国多年生野大豆物种建立了一套濒危程度评估系统(SEAS),首次对我国东南沿海多年生野大豆进行濒危性评估。结果显示,当前福建省短绒野大豆处于濒危状态(红色报警级别),广东省短绒野大豆和福建省烟豆处于近濒危状态(黄色预警级别),2个物种都处于近濒危以上状态,亟需人工保护干预。基于实地调查发现的墓地种群生境具有“庇护地”功能,建议未来在东南沿海地带建立以历史年代久远的村聚落墓地群群落为主、其他群落为辅的多年生野大豆物种开放式原生境保护带(区)。
[1] 国政, 臧润国. 中国极小种群野生植物濒危程度评价指标体系. 林业科学, 2013, 49(6): 10–17.
[2] 中华人民共和国国家林业和草原局, 农业农村部. 《国家重点保护野生植物名录》. 2021-09-29 [2025-03-17] (http://www.iplant.cn/newsinfo/283). [3] Singh R J, Nelson R L. The utilization of soybean wild relatives: how can it be effective. In: Abstracts for Oral Presentations and Posters. Beijing: Word Soybean Conference Research VIII, 2009. pp 211–212. [4] Sedivy E J, Wu F Q, Hanzawa Y. Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol, 2017, 214: 539–553. [5] Chung G, Singh R J. Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci, 2008, 27: 295–341. [6] Barrett R L, Barrett M D. Twenty-seven new species of vascular plants from Western Australia. Nuytsia, 2015, 26: 21–87. [7] Wang X D, Li X H, Zhang Z W, Wang K J. Genetic diversity and genetic structure of natural populations in an extremely narrowly distributed perennial species Glycine tabacina (Labill.) Benth. on the southeast islands in China. Genet Resour Crop Evol, 2019, 66: 989–1008.
[8] 张郑伟. 中国多年生野生大豆Glycine tomentella和Glycine tabacina的遗传多样性研究. 中国农业科学院博士学位论文, 北京, 2020.
[9] 王克晶, 张郑伟, 李向华. 我国大豆属多年生种遗传资源研究. 中国种业, 2023, (12): 67–75. [10] Broué P, Douglass J, Grace J P, Marshall D R. Interspecific hybridisation of soybeans and perennial Glycine species indigenous to Australia via embryo culture. Euphytica, 1982, 31: 715–724. [11] Newell C A, Hymowitz T. Successful wide hybridization between the soybean and a wild perennial relative, G. tomentella Hayata. Crop Sci, 1982, 22: 1062–1065. [12] Hartman G L, Wang T C, Hymowitz T. Sources of resistance to soybean rust in perennial Glycine species. Plant Dis, 1992, 76: 396–399. [13] Hartman G L, Gardner M E, Hymowitz T, Naidoo G C. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Crop Sci, 2000, 40: 545–549. [14] Hamim H, Violita V, Triadiati T, Miftahudin M. Oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat. Asian J Plant Sci, 2017, 16: 65–77. [15] Kao W Y, Tsai T T, Tsai H C, Shih C N. Response of three Glycine species to salt stress. Environ Exp Bot, 2006, 56: 120–125. [16] Lenis J M, Ellersieck M, Blevins D G, Sleper D A, Nguyen H T, Dunn D, Lee J D, Shannon J G. Differences in ion accumulation and salt tolerance among Glycine accessions. J Agron Crop Sci, 2011, 197: 302–310. [17] Riggs R D, Wang S, Singh R J, Hymowitz T. Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J Nematol, 1998, 30: 547–552. [18] Wen L, Yuan C, Herman T K, Hartman G L. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis, 2017, 101: 1201–1206. [19] Ladizinsky G, Newell C A, Hymowitz T. Wide crosses in soybeans: prospects and limitations. Euphytica, 1979, 28: 421–423. [20] Singh R J, Nelson R L. Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed, 2014, 133: 624–631. [21] Singh R J. Cytogenetics and genetic introgression from wild relatives in soybean. Nucleus, 2019, 62: 3–14.
[22] 魏宏图, 邓懋彬, 金念慈, 傅立国. 中国稀有濒危植物分级问题的微机定量研究. 植物学报, 1993, 35(增刊): 111–118.
[23] 姚振生, 张琮琼, 葛菲, 刘庆华. 江西珍稀濒危药用植物分级标准的研究. 武汉植物学研究, 1997, 15(2): 137–142.
[24] 周繇. 长白山区野生珍稀濒危药用植物资源评价体系的初步研究. 西北植物学报, 2006, 26: 599–605.
[25] 林淑芳, 陈美兰, 邵爱娟, 陈敏, 杨光. 药用植物受威胁及优先保护评价标准与方法的建立. 现代中药研究与实践, 2010, 24(6): 3–6. [26] Shan Z J, Zhang Q, Peng D X, Ye J F, Cao L, Chen Z D, Qin H N. Assessing conservation priorities of threatened medicinal plants in China: a new comprehensive phylogenetic scoring system. J Syst Evol, 2023, 61: 709–718.
[27] 李锋, 张冰冰, 张艳波, 赵晨辉, 邢国杰, 计秀杰. 我国东北部寒冷地区野生果树植物优先保护评价. 北方园艺, 2012, (9): 38–40.
[28] 许再富, 陶国达. 地区性的植物受威胁及优先保护综合评价方法探讨. 云南植物研究, 1987, 9(2): 193–202.
[29] 薛达元, 蒋明康, 李正方, 黄致远, 宗世贤, 杨开红. 苏浙皖地区珍稀濒危植物分级指标的研究. 中国环境科学, 1991, 11(3): 161–166.
[30] 颜立红, 澎春良, 夏晓敏, 廖舫林. 湖南珍稀濒危植物优先护存分级指标的研究. 湖南林业科技, 1997, 24(3): 39–43.
[31] 谢宗强,陈伟烈. 长江流域稀有濒危植物特征及其优先保护等级. 植物学报, 1999, 41: 1010–1015.
[32] 曹伟, 李岩, 丛欣欣. 中国东北濒危植物优先保护的定量评价. 林业科学研究, 2012, 25(2): 190–194.
[33] 成钢, 琚淑明, 殷庭超, 吉玲珍. 江苏濒危植物保护评价. 现代园艺, 2018, (9): 78–79.
[34] 何友均, 崔国发, 冯宗炜, 郑杰, 董建生, 李永波. 三江源自然保护区森林-草甸交错带植物优先保护序列研究. 应用生态学报, 2004, 15: 1307–1312.
[35] 邹大林, 何友均, 林秦文, 崔国发, 郑杰, 董建生, 李永波, 赫万成, 李长明, 张世玺. 三江源玛可河林区植物濒危程度和保护类别评价. 北京林业大学学报, 2006, 28(3): 20–25.
[36] 郝少英, 张峰. 山西历山自然保护区濒危植物保护等级评价. 东北林业大学学报, 2014, 42(6): 122–125.
[37] 张娥, 汪正祥, 李泽, 田凯. 湖北崩尖子自然保护区珍稀濒危植物保护优先性评价. 西部林业科学, 2015, 44(6): 100–105. [38] Wang K J, Li X H. Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja Sieb. & Zucc.) and implications for protection from GM soybeans. Euphytica, 2012, 186: 817–830. [39] Wang X D, Li X H, Zhang Z W, Wang K J. Characterization of genetic diversity and structures in natural Glycine tomentella populations on the southeast islands of China. Genet Resour Crop Evol, 2019, 66: 47–59. |
No related articles found! |
|