作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2137-2154.doi: 10.3724/SP.J.1006.2022.11105
• 综述 • 下一篇
摘要:
植物育种对于满足人们日益增长的对衣食住行的需求并适应不断变化的气候条件起着不可或缺的作用。育种过程包括制定育种目标、创建育种群体、选择优良品系三大环节。研究者围绕提高育种效率, 特别是选择效率提出了许多概念和方法, 比如各种应对基因型-环境互作的策略, 各种稳定性分析方法, 各种品种生态区划分方法, 各种试验设计和分析方法, 各种双标图分析方法, 以及各种多性状综合评价方法等等。另外, 全基因组预测已经发展成为育种工作者必须考虑和不能忽视的方法。了解这些概念、方法之间的关系, 哪些是有用的, 哪些是不必要的, 哪些是有问题的, 它们在整个育种体系中处于什么位置, 对提高育种效率具有实际意义。本文以个人长期的研究、思考和育种实践为基础, 对育种目标制定、育种群体创建, 特别是后代选择的基本原理、概念和方法进行了梳理、澄清和补充, 以期对品种选育和评价的理论和方法形成一个较完整、系统的论述, 并用实例演示一些重要的分析方法。
[1] | 赵洪璋. 小麦杂交育种工作的若干问题. 甘肃农业科技, 1982, (8): 1-3. |
Zhao H Z. Several issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1982, (8): 1-3. (in Chinese) | |
[2] | 赵洪璋. 小麦杂交育种的基本理论和三大问题. 甘肃农业科技, 1991, (2): 4-5. |
Zhao H Z. Basic theories and three major issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1991, (2): 4-5 (in Chinese) | |
[3] | 赵洪璋, 张海锋, 宋哲民. 小麦杂交育种工作中的若干问题. 陕西农业科学, 1981, (3): 1-8. |
Zhao H J, Zhang H F, Song Z M. Some issues in wheat hybridization breeding. Shaanxi Agric Sci, 1981, (3): 1-8 (in Chinese) | |
[4] | Yan W, Tinker N A, Bekele W A, Mitchell-Fetch J, Frégeau-Reid J. Theoretical unification and practical integration of conventional methods and genomic selection in plant breeding. Crop Breed Genet Genomic, 2019, 1: e190003. https://doi.org/10.20900/cbgg20190003. |
[5] | Yan W. A systematic narration of some key concepts and procedures in plant breeding. Front Plant Sci, 2021, 12: 1863. |
[6] |
Duvick D N. Plant breeding, an evolutionary concept. Crop Sci, 1996, 36: 539-548.
doi: 10.2135/cropsci1996.0011183X003600030001x |
[7] |
Rasmusson D C, Phillips R L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci, 1997, 37: 303-310.
doi: 10.2135/cropsci1997.0011183X003700020001x |
[8] | 李振声. 小麦远缘杂交新品种——小偃6号. 山西农业科学, 1986, (5): 30. |
Li Z S. New wheat cultivar from wide cross: Xiaoyan 6. Shanxi Agric Sci, 1986, (5): 30. (in Chinese) | |
[9] |
Arrones A, Vilanova S, Plazas M, Mangino G, Pascual L, Díez M J, Prohens J, Gramazio P. The dawn of the age of multi-parent MAGIC populations in plant breeding: novel powerful next- generation resources for genetic analysis and selection of recombinant elite material. Biology, 2020, 9: 229.
doi: 10.3390/biology9080229 |
[10] |
Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512 |
[11] |
Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010, 9: 166-177.
doi: 10.1093/bfgp/elq001 |
[12] |
Heslot N, Jannink J L, Sorrells M E. Perspectives for genomic selection applications and research in plants. Crop Sci, 2015, 55: 1-12.
doi: 10.2135/cropsci2014.03.0249 |
[13] |
Osthushenrich T, Frisch M, Zenke-Philippi C, Jaiser H, Spiller M, Cselényi L, Krumnacker K, Boxberger S, Kopahnke D, Habekuß A, Ordon F. Prediction of means and variances of crosses with genome-wide marker effects in barley. Front Plant Sci, 2018, 9: 1899.
doi: 10.3389/fpls.2018.01899 pmid: 30627135 |
[14] |
Wang L, Zhu G, Johnson W, Kher M. Three new approaches to genomic selection. Plant Breed, 2018, 137: 673-681
doi: 10.1111/pbr.12640 |
[15] |
Jean M, Cobe E, O’Donoughue L, Rajcan I, Belzile F. Improvement of key agronomical traits in soybean through genomic prediction of superior crosses. Crop Sci, 2021, 61: 3908-3918.
doi: 10.1002/csc2.20583 |
[16] | Eberhart S A. Factors affecting efficiencies of breeding methods. Afr Soils, 1970, 15: 655-680. |
[17] |
Cobb J N, Juma R U, Biswas P S, Arbelaez J D, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng E H. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet, 2019, 132: 627-645.
doi: 10.1007/s00122-019-03317-0 |
[18] | Zhou J, Nguyen H T. Solve the Breeder’s Equation using High- throughput Crop Phenotyping Technology. In: High-Throughput Crop Phenotyping (1-11). Wageningen, the Netherlands: Springer, 2021. |
[19] | Comstock R E, Moll R H. Genotype-environment interactions. Stat Gen Plant Breed, 1963, 982: 164-196. |
[20] | DeLacy I H, Basford K E, Cooper M, Bull J K, McLaren C G. Analysis of multienvironment trials—a historical perspective. In: Cooper M, Hammer G L, eds. Plant Adaptation and Crop Improvement. Wallingford (UK): IRRI/CABI, 1996. p 39124. |
[21] |
Atlin G N, Baker R J, McRae K B, Lu X. Selection response in subdivided target regions. Crop Sci, 2000, 40: 7-13.
doi: 10.2135/cropsci2000.4017 |
[22] | Yan W. Analysis and handling of G×E in a practical breeding program. Crop Sci, 2016, 2106-2118. |
[23] |
Cooper M, Voss-Fels K P, Messina C D, Tang T, Hammer G L. Tackling G×E×M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor Appl Genet, 2021, 134: 1625-1644.
doi: 10.1007/s00122-021-03812-3 pmid: 33738512 |
[24] | Fehr W. Principles of Cultivar Development:Theory and Technique. New York, USA: Macmillian Publishing Company, 1991. |
[25] |
Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597-605.
doi: 10.2135/cropsci2000.403597x |
[26] |
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805 |
Yan W. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819 (in Chinese with English Abstract). | |
[27] | Atlin G N, Kleinknecht K, Singh K P, Piepho H P. Managing genotype × environment interaction in plant breeding programs: a selection theory approach. J Ind Soc Agric Stat, 2011, 65: 237-247. |
[28] | Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014. |
[29] | Yan W. Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Sci, 2015, 113-122. |
[30] |
Yan W. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data. Sci Rep, 2019, 9: 7130.
doi: 10.1038/s41598-019-43683-9 |
[31] |
Gabriel K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58: 453-467.
doi: 10.1093/biomet/58.3.453 |
[32] | Yan W, Mitchell-Fetch J, Beattie A, Nilsen K T, Pageau D, DeHaan B, Hayes M, Mountain N, Cummiskey A, MacEachern D. Oat mega-environments in Canada. Crop Sci, 2021, 61: 1143-1153. |
[33] | Yan W, Frégeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 2015, 361-372. |
[34] | Yan W. Estimation of the optimal number of replicates in crop variety trials. Front Plant Sci, 2021, 11: 2231 |
[35] |
Becker H C. Correlations among some statistical measures of phenotypic stability. Euphytica, 1981, 30: 835-840.
doi: 10.1007/BF00038812 |
[36] |
Lin C S, Binns M R, Lefkovitch L P. Stability analysis: where do we stand? Crop Sci, 1986, 26: 894-900.
doi: 10.2135/cropsci1986.0011183X002600050012x |
[37] |
Huehn M. Nonparametric measures of phenotypic stability. Part 2: applications. Euphytica, 1990, 47: 195-201.
doi: 10.1007/BF00024242 |
[38] |
Segherloo A E, Sabaghpour S H, Dehghani H, Kamrani M. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 2008, 162: 221-229.
doi: 10.1007/s10681-007-9552-x |
[39] |
Scapim C A, Pacheco C A P, do Amaral Jr A T, Vieira R A, Pinto R J B, Conrado T V. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica, 2010, 174: 209-218.
doi: 10.1007/s10681-010-0118-y |
[40] |
Eberhart S T, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x |
[41] |
Ceccarelli S. Wide adaptation: how wide? Euphytica, 1989, 40: 197-205.
doi: 10.1007/BF00024512 |
[42] |
Zobel R W, Wright M J, Gauch Jr H G. Statistical analysis of a yield trial. Agron J, 1988, 80: 388-393.
doi: 10.2134/agronj1988.00021962008000030002x |
[43] |
Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-653.
doi: 10.2135/cropsci2006.06.0374 |
[44] |
Lin C S, Binns M R. A superiority measure of cultivar performance for cultivar × location data. Can J Plant Sci, 1988, 68: 193-198.
doi: 10.4141/cjps88-018 |
[45] | Lin C S, Binns M R. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breed Rev, 1994, 12: 271-297. |
[46] |
Kang M S. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agron J, 1993, 85: 754-757.
doi: 10.2134/agronj1993.00021962008500030042x |
[47] |
Gauch Jr H G, Zobel R W. Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet, 1988, 76: 1-10.
doi: 10.1007/BF00288824 pmid: 24231975 |
[48] | Yan W, Kang M S. GGE Biplot Analysis:a Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, USA: CRC Press, 2002. |
[49] |
Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
doi: 10.2135/cropsci2005.07-0193 |
[50] |
Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci, 2008, 48: 866-889.
doi: 10.2135/cropsci2007.09.0513 |
[51] | Yan W. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J Indian Soc Agri Stat, 2011, 65: 181-193. |
[52] |
Badu-Apraku B, Oyekunle M, Obeng-Antwi K, Osuman A S, Ado S G, Coulibay N. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. J Agric Sci, 2012, 150: 473.
doi: 10.1017/S0021859611000761 |
[53] | Amira J O, Ojo D K, Ariyo O J, Oduwaye O A, Ayo-Vaughan M A. Relative discriminating powers of GGE and AMMI models in the selection of tropical soybean genotypes. Afr J Crop Sci, 2013, 21: 67-73. |
[54] |
Hoyos-Villegas V, Wright E M, Kelly J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel. Crop Sci, 2016, 56: 1081-1094.
doi: 10.2135/cropsci2015.10.0609 |
[55] |
Oliveira T R A D, Carvalho H W L D, Oliveira G H F, Costa E F N, Gravina G D A, Santos R D D, Carvalho J L S D. Hybrid maize selection through GGE biplot analysis. Bragantia, 2019, 78: 166-174.
doi: 10.1590/1678-4499.20170438 |
[56] |
Heslot N, Yang H P, Sorrells M E, Jannink J L. Genomic selection in plant breeding: a comparison of models. Crop Sci, 2012, 52, 146-160.
doi: 10.2135/cropsci2011.06.0297 |
[57] |
Cullis B R, Gleeson A C. Spatial analysis of field experiments: an extension to two dimensions. Biometrics, 1991, 47: 1449-1460.
doi: 10.2307/2532398 |
[58] |
Cullis B R, Gogel B, Verbyla A, Thompson R. Spatial analysis of multi-environment early generation variety trials. Biometrics, 1998, 54: 1-18.
doi: 10.2307/2533991 |
[59] |
Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat, 1997, 2: 269-293.
doi: 10.2307/1400446 |
[60] | Burgueño J, Cadena A, Crossa J, Banziger M, Gilmour A R, Cullis B. User’s Guide for Spatial Analysis of Field Variety Trials using ASREML. Mexico: CIMMYT, 2000. |
[61] |
Qiao C G, Basford K E, DeLacy I H, Cooper M. Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theor Appl Genet, 2000, 100: 9-16.
doi: 10.1007/s001220050002 |
[62] |
Yang R C, Ye T Z, Blade S F, Bandara M. Efficiency of spatial analyses of field pea variety trials. Crop Sci, 2004, 44: 49-55.
doi: 10.2135/cropsci2004.4900 |
[63] | Tanksley S D. Molecular markers in plant breeding. Plant Mol Biol Rep, 1983, 1: 3-8. |
[64] | Yan W, Wallace D H. Breeding for negatively associated traits. Plant Breed Rev, 1995, 13: 141-177. |
[65] |
Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291.
doi: 10.1046/j.1439-0523.2002.730285.x |
[66] |
Cooper M, van Eeuwijk F A, Hammer G L, Podlich D W, Messina C. Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol, 2009, 12: 231-240.
doi: 10.1016/j.pbi.2009.01.006 pmid: 19282235 |
[67] |
Hao Y, Velu G, Peña R J, Singh S, Singh R P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed, 2014, 34: 1893-1902.
doi: 10.1007/s11032-014-0147-7 |
[68] |
Crespo-Herrera L A, Velu G, Singh R P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol, 2016, 169: 27-35.
doi: 10.1111/aab.12276 |
[69] | Simmonds N, Smartt J. Principles of Crop Improvement, 2nd edn. Oxford, UK: Blackwell Science Ltd. Press, 1999. |
[70] |
Yan W, Frégeau-Reid J. Breeding line selection based on multiple traits. Crop Sci, 2008, 48: 417-423.
doi: 10.2135/cropsci2007.05.0254 |
[71] |
Yan W, Frégeau-Reid J. Genotype by yield×trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8 |
[72] | Yan W, Frégeau-Reid J, Mountain N, Kobler J. Genotype and management evaluation based on genotype by yield × trait (GYT) analysis. Crop Breed Genet Genom, 2019, 1: e190002. |
[73] | Boureima S, Abdoua Y A O U. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turk J Field Crops, 2019, 24: 237-244. |
[74] | de Oliveira T R A, de Amaral G G, de Moura R M, de Alcântara N F, da Cruz D P, de Oliveira G H F, da Costa J M E P Rocha R S. GYT biplot analysis: a new approach for cowpea line selection. J Exp Agric Internat, 2019, 41: 1-9. |
[75] |
Mohammadi R. Genotype by yield × trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Res Commun, 2019, 47: 541-551.
doi: 10.1556/0806.47.2019.32 |
[76] |
Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323-330.
pmid: 18076469 |
[77] |
Ma F, Xu Y, Ma Z, Li L, An D. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018, 38: 91.
doi: 10.1007/s11032-018-0837-7 |
[78] | Badu-Apraku B, Bankole F A, Ajayo B S, Fakorede M A B, Akinwale R O, Talabi A O. Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Prot, 2021, 139: 105386. |
[79] |
许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135 |
Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135 |
|
[80] |
Tsenov N, Gubatov T, Yanchev I. Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Res Commun, 2021, 49: 119-124.
doi: 10.1007/s42976-020-00080-7 |
[81] |
Sofi P A, Saba I, Ara A, Rehman K. Comparative efficiency of GY × T approach over GT approach in genotypic selection in multiple trait evaluations: case study of common bean (Phaseolus vulgaris) grown under temperate Himalayan conditions. Agric Res (India: Online), 2021, 10.1007/s40003-021-00577-5.
doi: 10.1007/s40003-021-00577-5 |
[82] |
de Oliveira L A, da Silva C P, da Silva A Q, Mendes C T E, Nuvunga J J, Nunes J A R, Parrella R A D C, Baleste M, Filho J S D S B. Bayesian GGE model for heteroscedastic multi- environmental trials. Crop Sci, 2022, 62: in press. 10.1002/csc2.20696.
doi: 10.1002/csc2.20696 |
[1] | 张毅,许乃银,郭利磊,杨子光,张笑晴,杨晓妮. 我国北部冬麦区小麦区域试验重复次数和试点数量的优化设计[J]. 作物学报, 2020, 46(8): 1166-1173. |
[2] | 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368. |
[3] | 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52. |
[4] | 许乃银,金石桥,李健. 我国棉花品种区域试验重复次数和试点数量的设计[J]. 作物学报, 2016, 42(01): 43-50. |
[5] | 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945. |
[6] | 罗俊,张华,邓祖湖,许莉萍,徐良年,袁照年,阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状[J]. 作物学报, 2013, 39(01): 142-152. |
[7] | 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报, 2010, 36(11): 1805-1819. |
[8] | 倪小文;阎俊;陈新民;夏先春;何中虎;张勇;王德森;Morten Lillemo. 鲁麦21慢白粉病抗性基因数目和遗传力分析[J]. 作物学报, 2008, 34(08): 1317-1322. |
[9] | 王春娥;赵团结;盖钧镒. 中国栽培和野生大豆豆腐与豆乳得率的遗传变异[J]. 作物学报, 2007, 33(12): 1928-1934. |
[10] | 张勇;张立平;阎俊;张艳;王德森;刘建军;何中虎. 普通小麦面筋强度早代选择研究[J]. 作物学报, 2006, 32(11): 1663-1670. |
[11] | 邓华凤;何强;毛友纯;徐庆国;舒服;张武汉;杨飞;袁隆平. 长江流域杂交早稻品质性状的表现及配合力研究[J]. 作物学报, 2006, 32(05): 633-639. |
[12] | 余守武;尹建华;刘宜柏;胡标林;邹国兴;彭志勤. 三交水稻的育种研究Ⅲ.三交中晚稻主要农艺性状的配合力和遗传力分析[J]. 作物学报, 2005, 31(06): 784-789. |
[13] | 张坚勇;肖应辉;万向元;刘世家;王春明;陈亮明;孔令娜;翟虎渠;万建民. 水稻品种外观品质性状稳定性分析[J]. 作物学报, 2004, 30(06): 548-554. |
[14] | 黄蛟龙;曹致琦;马海燕;张泽. 极大似然法探测主基因的效能[J]. 作物学报, 2003, 29(01): 133-137. |
[15] | 李硕碧;裴阿卫;李必运. 小麦品质性状的遗传及选择方法研究[J]. 作物学报, 2002, 28(06): 816-820. |
|