欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3154-3161.doi: 10.3724/SP.J.1006.2023.31009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用远缘杂交和未减数配子基因创制小麦加倍单倍体

刘小娟1,2(), 柳欣2, 张明虎2, 郝明2, 甯顺腙2, 袁中伟2, 黄林2, 刘登才1,2, 张连全1,2,*()   

  1. 1四川农业大学 / 西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
    2四川农业大学小麦研究所, 四川成都611130
  • 收稿日期:2023-02-08 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-02
  • 通讯作者: * 张连全, E-mail: zhanglianquan1977@126.com
  • 作者简介:E-mail: 925095898@qq.com
  • 基金资助:
    国家自然科学基金项目(31671682);四川省重点研发项目(2021YFYZ0002)

Creation of doubled haploid in wheat using distant hybridization and unreduced gamete genes

LIU Xiao-Juan1,2(), LIU Xin2, ZHANG Ming-Hu2, HAO Ming2, NING Shun-Zong2, YUAN Zhong-Wei2, HUANG Lin2, LIU Deng-Cai1,2, ZHANG Lian-Quan1,2,*()   

  1. 1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-02-08 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-02
  • Contact: * E-mail: zhanglianquan1977@126.com
  • Supported by:
    National Natural Science Foundation of China(31671682);Key Research and Development Program of Sichuan Province, China(2021YFYZ0002)

摘要:

未减数配子的结合实现染色体自动加倍, 是多倍体物种起源的重要途径, 也是提高作物单倍体育种效率的重要手段。我们前期从四倍体小麦发掘出控制未减数配子形成的强效QTL位点QTug.sau-3B, 并通过人工合成小麦为“桥梁”, 将其导入到综合农艺性状优良的小麦新品系中。本实验使用5份含未减数配子基因的优良小麦新品系与不含未减数配子基因的小麦推广品种的F1杂种作母本与3份白茅(Imperata cylindrica)进行远缘杂交, 共授粉4610朵小花, 结实1965粒, 经幼胚拯救获得244个幼胚, 其中50个幼胚发育正常生长为50个小麦单倍体植株。由于小麦单倍体植株未减数配子基因的表达易受环境影响, 因此, 对单倍体植株在相同光周期(18 h光照/6 h黑暗)下进行了不同温度25℃/18℃、25℃/15℃和25℃/10℃处理, 结果表明, 25℃/18℃和25℃/10℃条件下编号为H31单倍体植株能够结实, 自交结实率分别为4.35%和2.41%。该研究结果为建立“基于小麦-白茅杂交实现染色体消除和未减数配子基因实现染色体自动加倍”的小麦单倍体育种技术提供了参考。

关键词: 单倍体育种, 白茅, 未减数配子, 幼胚拯救

Abstract:

The union of unreduced female and male gametes leads to spontaneous chromosome doubling, which is not only an important way of the origin of polyploid species but also an essential tool for enhancing crop doubled haploid breeding efficiency. A major quantitative trait locus QTug.sau-3B responsible for unreduced gametes formation was discovered in tetraploid Triticum turgidum wheat and was further transferred to elite common wheat lines using synthetic hexaploid wheat as a bridge. This objective of this study is to make wheat/wheat F1 hybrids between the elite lines with this gene region and commercial cultivars and to evaluate the efficiency of QTug.sau-3B gene leading to spontaneous chromosome doubling. Wheat/wheat F1 hybrids and their parents were pollinated with the fresh pollen of Imperata cylindrica to produce wheat haploid through chromosome elimination of I. cylindrica. Doubled haploid (DH) were then developed by spontaneous chromosome doubling in haploids because of the union of unreduced female and male gametes. In this experiment, 5 F1 hybrid materials and 3 I. cylindrica materials were used for distant hybridization. 4610 florets were pollinated, 1965 seeds were produced, 244 embryos were obtained, and 50 wheat haploid plants were obtained. In different temperature treatments, the haploid plant numbered H31 set seeds at 25℃/18℃ (18 h/6 h) and 25℃/10℃ (18 h/6 h), and the self-fertilization rate was 4.35% and 2.41%, respectively. The results of this study provide a reference for the establishment of wheat haploid breeding technology of chromosome elimination based on wheat-I. cylindrica hybridization and automatic chromosome doubling based on unreduced gamete genes.

Key words: haploid breeding, Imperata cylindrica, unreduced gametes, embryo rescue

表1

白茅材料来源及抽穗和开花时间(2018年)"

编号
Code
来源地
Location
抽穗时间
Heading time (month/day)
开花时间
Flowering time (month/day)
BMZ1616 四川宜宾翠屏 Cuiping, Yibin, Sichuan 4/23 4/28
BMZ1617 四川资阳乐至 Lezhi, Ziyang, Sichuan 4/26 4/29
BMZ1801 四川成都崇州 Chongzhou, Chengdu, Sichuan 4/26 4/29
BMZ1605 江苏宿迁沭阳 Shuyang, Suqian, Jiangsu 4/27 4/29
BMZ1602 福建宁德屏南 Pingnan, Ningde, Fujian 4/28 4/30
BMZ1612 山东临沂费县 Feixian, Linyi, Shandong 4/28 4/30
BMZ1604 广东揭阳东山 Dongshan, Jieyang, Guangdong 4/28 5/1
BMZ1610 湖北十堰丹江口 Danjiangkou, Shiyan, Hubei 4/29 5/1
BMZ1621 江苏徐州沛县Peixian, Xuzhou, Jiangsu 4/29 5/1
BMZ1606 贵州遵义习水 Xishui, Zunyi, Guizhou 5/6 5/8
BMZ1618 四川自贡富顺 Fushun, Zigong, Sichuan 5/6 5/8
BMZ1619 浙江温州永嘉 Yongjia, Wenzhou, Zhejiang 5/9 5/11

表2

不同小麦/小麦F1与白茅杂交结实数(率)、得胚数(率)及获得植株数(率) (2019)"

小麦材料
Wheat material
授粉小花数
Pollinated florets
结实数
Pseudo seeds (%)
得胚数
Embryo formation (%)
获得植株
Plantlet rate (%)
L14-6/CM602 F1 1588 701 (44.14)c 169 (24.11)a 26 (15.38)b
L14-6/SM114 F1 868 439 (50.58)b 61 (13.9)b 21 (34.43)a
L13-81/SM114 F1 963 395 (41.02)c 9 (2.28)c 0 (0)
L13-471/CM96 F1 973 299 (30.73)d 5 (1.67)c 3 (60)a
L13-316/SM830 F1 218 131 (60.09)a 0 (0) 0 (0)
总计Total 4610 1965 (42.62) 244 (12.42) 50 (20.49)

表3

不同白茅与小麦杂交结实数、得胚数及获得植株数(率) (2019)"

白茅编号
I. cylindrica
授粉小花数
Pollinated florets
结实数
Pseudo seeds (%)
得胚数
Embryo formation (%)
获得植株
Plantlet rate (%)
BMZ1801 430 146 (33.95)b 30 (20.55)a 8 (26.67)a
BMZ1617 1418 514 (36.25)b 28 (5.45)c 5 (17.86)a
BMZ1616 2762 1305 (47.25)a 186 (14.25)b 37 (19.89)a

图1

L14-6/川麦602//白茅F1获得的单倍体植株H31根尖染色体数目观察(a, 2n = 21)、减数分裂中期I花粉母细胞染色体观察(b, 2n = 21)及流式细胞仪检测(c) 标尺为10 μm。"

图2

L14-6/川麦602//白茅F1获得的单倍体植株H31花粉母细胞减数分裂产生了未减数配子 a: 减I前期的后期; b: 形成恢复核; c: 减II后期; d: 形成二分体。标尺为10 μm。"

图3

Xgpw1146在50个单倍体植株及其对应亲本中的扩增结果 M: marker; L: Langdon; A: AS2255; 1: L13-471; 2: 川麦96; 3~5: 单倍体植株H1~H3; 6: L14-6; 7: SM114; 8~28: 单倍体植株H4~H24; 29: L14-6; 30: 川麦602; 31~56: 单倍体植株H25~H50; 57: L14-6; 58: 川麦602。红色字体标记含有Xgpw1146扩增产物的单倍体植株, 红色箭头指示单倍体植株H31。"

表4

单倍体植株未减数配子基因位点QTug.sau-3B连锁标记Xgpw1146检测"

QTug.sau-3B单株编号
Code of haploid plants with QTug.sau-3B
单倍体株数(编号)
Number of haploid plants
(Plant ID)
系谱
Pedigree
QTug.sau-3B来源
Origin of QTug.sau-3B
H1 3 (H1-H3) L13-471/CM96//I. cylindrica F1 AS2255
H7, H8, H10, H11, H12, H13, H14, H16, H19, H20, H23, H24 21 (H4-H24) L14-6/SM114//I. cylindrica F1 Langdon
H25, H26, H27, H28, H31, H33, H35, H36, H38, H39, H41, H45, H47, H48, H49, H50 26 (H25-H50) L14-6/CM602//I. cylindrica F1 Langdon

表5

单倍体植株H31 (系谱: L14-6/川麦602//白茅F1)经不同温度和光照处理后的自交结实率"

单倍体编号
Haploid number
处理时期
Treatment stage
处理温度和光照时间
Temperature (℃)/time (h)
自交小花数
Selfed florets
自交结实数
Selfed seeds
自交结实率
Selfed seed set rate (%)
H31-1 孕穗期Booting stage 25/18, 18/6 92 4 4.35
H31-2 孕穗期Booting stage 25/15, 18/6 89 0 0
H31-3 孕穗期Booting stage 25/10, 18/6 83 2 2.41

图4

单倍体植株H31自交结实获得的4个加倍单倍植株根尖染色体数(2n = 42) a: DH-H31-1; b: DH-H31-2; c: DH-H31-3; d: DH-H31-4; e: 田间植株形态。标尺为10 μm。"

表6

4个加倍单倍体植株H31农艺性状调查"

材料
Material
株高
Plant height (cm)
分蘖数
No. of tillers
穗长
Spike length (cm)
小穗数
Spikelets
小花数
Florets
穗粒数
Seeds
自交结实率
Self-fertilization rate (%)
DH-H31-1 114.0 4 12.0 15 30 27 90.00
DH-H31-2 118.5 4 12.5 14 28 26 86.67
DH-H31-3 132.5 5 13.5 17 34 29 96.67
DH-H31-4 115.0 3 13.0 15 30 24 80.00
[1] Raina S K. Doubled haploid breeding in cereals. Plant Breed Rev, 1997, 15: 141-186.
[2] Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T. Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue Organ Cult, 1998, 53: 67-74.
doi: 10.1023/A:1006023725640
[3] Cistué L, Soriano M, Castillo A M, Vallés M P, Sanz J M, Echávarri B. Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep, 2006, 25: 257-264.
pmid: 16220343
[4] Touraev A, Pfosser M, Heberle-Bors E. The microspore: a haploid multipurpose cell. Adv Bot Res, 2001, 35: 53-109.
[5] Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rew Mol Cell Biol, 2020, 21: 661-677.
[6] Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot, 2020, 71: 1337-1349.
doi: 10.1093/jxb/erz529
[7] Liu C X, Zhong Y, Qi X L, Chen M, Liu Z K, Chen C, Tian X L, Li J L, Jiao Y Y, Wang D, Wang Y W, Li M R, Xin M M, Liu W X, Jin W W, Chen S J. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J, 2020, 18: 316-318.
doi: 10.1111/pbi.v18.2
[8] Barclay I R. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature, 1975, 256: 410-411.
doi: 10.1038/256410a0
[9] Zenkteler M, Nitzsche W. Wide hybridization experiments in cereals. Theor Appl Genet, 1984, 68: 311-315.
doi: 10.1007/BF00267883 pmid: 24257639
[10] Inagaki M, Mujeeb-Kazi A. Comparison of polyhaploid production prequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Jpn J Breed, 1995, 45: 157-161.
doi: 10.1270/jsbbs1951.45.157
[11] Riera-Lizarazu O, Mujeeb-Kazi A. Polyhaploid production in the Triticeae: wheat × Tripsacum crosses. Crop Sci, 1993, 33: 973-976.
doi: 10.2135/cropsci1993.0011183X003300050020x
[12] Mochida K. Production of wheat doubled haploids by pollination with Job’s Tears (Coix lachryma-jobi L.). J Hered, 2001, 92: 81-83.
doi: 10.1093/jhered/92.1.81 pmid: 11336235
[13] Chaudhary H K, Sethi G S, Singh S, Pratap A, Sharma S. Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed, 2005, 124: 96-98.
doi: 10.1111/pbr.2005.124.issue-1
[14] Liu D C, Zhang H G, Zhang L Q, Yuan Z W, Hao M, Zheng Y L. Distant hybridization: a tool for interspecific manipulation of chromosomes. In: Pratap A, Kumar J, eds. Alien Gene Transfer in Crop Plants, Volume 1: Innovations, Methods and Risk Assessment. New York: Springer, 2014. pp 25-42.
[15] Chaudhary H K, Kaila V, Rather S A, Tayeng T. Distant hybridization and doubled-haploidy breeding. In: Pratap A, Kumar J, eds. Alien Gene Transfer in Crop Plants, Volume 1: Innovations, Methods and Risk Assessment. New York: Springer, 2014. pp 143-164.
[16] Chan S W L. Chromosome engineering: power tools for plant genetics. Trends Biotech, 2010, 28: 605-610.
doi: 10.1016/j.tibtech.2010.09.002
[17] Cheng K T, Chou C H. Ecotypic variation of Imperata cylindrica populations in Taiwan: I. Morphological and molecular evidences. Bot Stud, 1997, 38: 215-223.
[18] Chaudhary H K. Dynamics of wheat × Imperata cylindrica: a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, Mcintyre L, Sharp P, eds. Proceedings of the 11th International Wheat Genetics Symposium. Sydney, Australia: Sydney University Press, 2008.
[19] Komeda N, Chaudhary H K, Suzuki G, Mukai Y. Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst, 2007, 82: 241-248.
doi: 10.1266/ggs.82.241 pmid: 17660694
[20] Tayeng T, Chaudhary H K, Kishore N. Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulations in Imperata cylindrica-mediated chromosome elimination approach. Plant Breed, 2012, 131: 574-578.
doi: 10.1111/pbr.2012.131.issue-5
[21] Kaila V, Chaudhary H K, Tayeng T, Rather S A. Resolution of genetic mechanism of chromosome elimination in wheat × Imperata cylindrica system of doubled haploidy breeding: the genome responsible. In: Proceedings of National Seminar on Plant Cytogenetics: New Approaches. Patiala, Punjab, India: Department of Botany, Punjabi University, 2012. p 82.
[22] Chaudhary H K. New frontiers in chromosome engineering for enhanced and high precision crop improvement. In: Proceedings of National Seminar on Plant Cytogenetics: New Approaches. Patiala, Punjab, India: Department of Botany, Punjabi University. 2012. pp 35-36.
[23] Chaudhary H K, Tayeng T, Kaila V, Rather S A. Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica-mediated chromosome elimination approach. Plant Breed, 2013, 132: 155-158.
doi: 10.1111/pbr.2013.132.issue-2
[24] Chaudhary H K, Tayeng T, Kaila V, Rather S A. Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. Nucleus, 2013, 56: 7-14.
[25] Rather S A, Chaudhary H K, Kaila V. Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun, 2014, 42: 19-26.
doi: 10.1556/CRC.2013.0038
[26] Mahato A, Chaudhary H K. Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed, 2015, 134: 379-383.
doi: 10.1111/pbr.2015.134.issue-4
[27] Niemirowicz-Szczytt K. Excessive homozygosity in doubled haploids: advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant, 1997, 19: 155-167.
doi: 10.1007/s11738-997-0032-7
[28] Forster B P, Heberle-Bors E, Kasha K J, Touraev A. The resurgence of haploids in higher plants. Trends Plant Sci, 2007, 12: 368-375.
doi: 10.1016/j.tplants.2007.06.007 pmid: 17629539
[29] Don Palmer C E, Keller W A. Challenges and Limitations to the Use of Haploidy in crop improvement. In: Don Palmer C E, Keller W A, Kasha K J. Haploids in Crop Improvement II. Berlin, Heidelberg: Springer, 2005. pp 295-303.
[30] Brownfield L, Kohler C. Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot, 2011, 62: 1659-1668.
doi: 10.1093/jxb/erq371 pmid: 21109579
[31] Xu S J, Dong Y S. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 1992, 35: 379-384.
doi: 10.1139/g92-057
[32] Xu S J, Joppa L R. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 1995, 38: 607-615.
pmid: 18470193
[33] Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 2004, 109: 1710-1717.
doi: 10.1007/s00122-004-1806-6
[34] Zhang L Q, Chen Q J, Yuan Z W, Xiang Z G, Zheng Y L, Liu D C. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genom, 2008, 35: 617-623.
doi: 10.1016/S1673-8527(08)60082-X
[35] Zhang L Q, Liu D C, Zheng Y L, Yan Z H, Dai S F, Li Y F, Jiang Q, Ye Y Q, Yen Y. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica, 2010, 172: 285-294.
doi: 10.1007/s10681-009-0081-7
[36] Zhang L Q, Yen Y, Zheng Y L, Liu D C. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod, 2007, 20: 159-166.
doi: 10.1007/s00497-007-0052-x
[37] De Storme N, Copenhaver G P, Geelen D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol, 2012, 160: 1808-1826.
doi: 10.1104/pp.112.208611 pmid: 23096158
[38] Zeng D Y, Hao M, Luo J T, Zhang L Q, Yuan Z W, Ning S Z, Zheng Y L, Liu D C. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. J Genet, 2014, 93: 531-534.
doi: 10.1007/s12041-014-0393-9
[39] Yang Y W, Zhang L Q, Yen Y, Zheng Y L, Liu D C. Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. Caryologia, 2010, 63: 354-358.
doi: 10.1080/00087114.2010.10589746
[40] Hao M, Luo J T, Zeng D Y, Zhang L, Ning S Z, Yuan Z W, Yan Z H, Zhang H G, Zheng Y L, Feuillet C, Choulet F, Yen Y, Zhang L Q, Liu D C. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3: Genes Genom Genet, 2014, 4: 1943-1953.
[41] 寇春兰, 赵来宾, 刘梦, 郝明, 甯顺腙, 袁中伟, 刘登才, 张连全. 小麦未减数配子基因的连锁标记及染色体区段检测. 作物学报, 2016, 42: 984-989.
doi: 10.3724/SP.J.1006.2016.00984
Kou C L, Zhao L B, Liu M, Hao M, Ning S Z, Yuan Z W, Liu D C, Zhang L Q. Detection of the molecular marker and chromosomal segment linked to unreduced gamete gene in common wheat. Acta Agron Sin, 2016, 42: 984-989. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00984
[42] Depauw R M, Knox R E, Humphreys D G, Thomas J B, Fox S L, Brown P D, Singh A K, Pozniak C, Randhawa H S, Fowler D B, Graf R J, Hucl P. New breeding tools impact Canadian commercial farmer fields. Czech J Genet Plant Breed, 2011, 47: S28-S34.
doi: 10.17221/3250-CJGPB
[43] Pauk J, Mihály R, Puolimatka M. Protocol for wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha K J, Forster B P, Szarejko I, eds. Doubled Haploid Production in Crop Plants. Dordrecht: Springer Netherlands, 2003. pp 59-64.
[44] Patial M, Pal D, Thakur A, Bana R S, Patial S. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview. Natl Acad Sci India Proc, Section B: Biol Sci, 2019, 89: 27-41.
[1] 寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*. 小麦未减数配子基因的连锁标记及染色体区段检测[J]. 作物学报, 2016, 42(07): 984-989.
[2] 许树军;董玉琛. 波斯小麦×节节麦杂种F_1直接形成双二倍体的细胞遗传学研究[J]. 作物学报, 1989, 15(03): 251-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .