欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (05): 650-655.

• 研究论文 • 上一篇    下一篇

大豆对胞囊线虫(Heterodera glycines Ichinohe) 1号和4号生理小种抗性的遗传分析

卢为国;盖钧镒;李卫东   

  1. 南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2005-05-26 修回日期:1900-01-01 出版日期:2006-05-12 网络出版日期:2006-05-12
  • 通讯作者: 盖钧镒

Inheritance of Resistance to Race 1 and Race 4 of Cyst Nematode (Heterodera glycines Ichinohe) in Soybeans

LU Wei-Guo; GAI Jun-Yi; and LI Wei-Dong   

  1. Soybean Research Institute of Nanjing Agricultural University, National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu
  • Received:2005-05-26 Revised:1900-01-01 Published:2006-05-12 Published online:2006-05-12
  • Contact: GAI Jun-Yi

摘要:

大豆胞囊线虫(Heterodera glycines Ichinohe)是我国大豆的全国性主要病害之一。1号和4号生理小种是黄淮地区的优势小种。以Essex×ZDD2315、Peking×ZDD2315、PI88788×ZDD2226、Peking×ZDD2226的P1、P2、F1、BC1F2为材料,用主基因+多基因混合遗传模型分析大豆对胞囊线虫1号和4号生理小种抗性的遗传机制。结果表明,ZDD2315、ZDD2226对1号生理小种的抗性受主效基因控制,未发现多基因效应,且与Peking存在相同的抗病基因;抗性遗传表现组合特异性,Essex×ZDD2315组合为3对加性主基因遗传模型,主基因遗传率72.02%,PI88788×ZDD2226组合为2对显性上位主基因遗传模型,主基因遗传率62.33%。对4号生理小种的抗性为主基因+多基因混合遗传模型,Essex×ZDD2315、Peking×ZDD2315、PI88788×ZDD2226等3个组合为3对主基因+多基因遗传模型,主基因遗传率分别为67.76%、72.46%和53.25%,多基因遗传率分别为24.48%、21.31%和35.77%;Peking×ZDD2226表现为2对主基因遗传模型,主基因遗传率45.40%。抗性基因表现为隐性,育种上可以在早代选择。培育多抗品种应以抗4号生理小种为主要目标进行基因聚合。

关键词: 大豆[Glycine max (L.) Merr.], 胞囊线虫(Heterodera glycines Ichinohe), 抗性遗传, 主基因+多基因混合遗传模型

Abstract:

Soybean cyst nematode (Heterodera glycines Ichinohe) is one of the two most important nation-wide soybean diseases in China. Race 1 and 4 of the pathogen, especially the latter, are most popular in Huang-Huai Valleys and ZDD2315 and ZDD2226 have been identified as elite resistance sources. The present study was aimed to reveal the genetic mechanism of resistance to the two races by using the two resistant materials. Genetic analysis was performed under major gene + polygene mixed inheritance model in the four BC1F2 populations derived from the soybean crosses of Essex×ZDD2315, Peking×ZDD2315, PI88788×ZDD2226 and Peking×ZDD2226. The results showed that the resistance to Race 1 was controlled by two or three major genes, but no polygene effect detected. In Cross Essex×ZDD2315, three major genes contributed to the resistance to Race 1 with the heritability of 72.02%, while two dominant-epistasis major genes were detected with the heritability of 62.33% in Cross PI88788×ZDD2226. The two resistance sources, ZDD2315 and ZDD2226, might have the same resistant genes with Peking conferring resistance to Race 1 because the two crosses Peking×ZDD2315 and Peking×ZDD2226 did not segregate in reaction to Race 1. The resistance to Race 4 was mainly conditioned by three major genes plus polygene in the crosses of Essex×ZDD2315, Peking×ZDD2315 and PI88788×ZDD2226 with the major gene heritability of 67.76%, 72.46% and 53.25%, respectively and the polygene heritability of 24.48%, 21.31% and 35.77%, respectively. However only two major genes were identified in the cross of Peking×ZDD2226. All the F1s and the detected additive effects had a similar response to susceptible parents, indicating the resistance to Race 1 and Race 4 mainly was controlled by recessive genes. Therefore, selection could be taken at early generations in breeding programs and pyramiding of genes resistant to both races should emphasize on resistance to Race 4 because most of the BC1F2 lines resistant to Race 4 also showed resistance to Race 1.

Key words: Soybean, Heterodera glycines Ichinohe, Inheritance, Major gene + polygene mixed inheritance model

中图分类号: 

  • S565
[1] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[2] 钟振泉,罗文龙,刘永柱,王慧,陈志强,郭涛. 一份新的水稻斑点叶突变体spl32的鉴定和基因定位[J]. 作物学报, 2015, 41(06): 861-871.
[3] 盖江涛,赵团结,李艳,盖钧镒. 大豆腺苷酸激酶基因GmADK的克隆与表达分析[J]. 作物学报, 2013, 39(10): 1739-1745.
[4] 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788.
[5] 阳小凤,杨永庆,郑桂杰,智海剑,李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位[J]. 作物学报, 2013, 39(02): 216-221.
[6] 曹岩,张晓玫,陈新建,傅永福. 大豆GmNF-YC2基因的克隆与功能分析[J]. 作物学报, 2012, 38(09): 1607-1616.
[7] 王大刚, 马莹, 刘宁, 郑桂杰, 杨中路, 杨永庆, 智海剑. 大豆花叶病毒(SMV)株系SC4和SC8的抗性遗传分析[J]. 作物学报, 2012, 38(02): 202-209.
[8] 张清哲,马锦花,陈新建,傅永福. 大豆GmCOL4基因的克隆与分析[J]. 作物学报, 2010, 36(4): 539-548.
[9] 张启武,江建华,姚瑾,洪德林. 穞稻与粳稻恢复系C堡籽粒灌浆速率的特征及遗传分析[J]. 作物学报, 2009, 35(7): 1229-1235.
[10] 刘顺湖,周瑞宝,盖钧镒. 大豆蛋白质有关性状遗传的分离分析[J]. 作物学报, 2009, 35(11): 1958-1966.
[11] 瞿瑛;刘素红;谢云. 植被覆盖度计算机模拟模型与参数敏感性分析[J]. 作物学报, 2008, 34(11): 1964-1969.
[12] 李余生;朱镇;张亚东;赵凌;王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J]. 作物学报, 2008, 34(10): 1728-1733.
[13] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析 II. 优异等位变异的发掘[J]. 作物学报, 2008, 34(08): 1339-1349.
[14] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析 I. 群体结构及关联标记[J]. 作物学报, 2008, 34(07): 1169-1178.
[15] 邢光南;赵团结;盖钧镒. 大豆对豆卷叶螟Lamprosema indicata (Fabricius)抗性的遗传分析[J]. 作物学报, 2008, 34(01): 8-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!