欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2152-2159.doi: 10.3724/SP.J.1006.2008.02152

• 耕作栽培·生理生化 • 上一篇    下一篇

甘蓝型油菜重组自交系苗期磷效率的评价

张海伟1;黄宇1;叶祥盛1;徐芳森1,2,*   

  1. 1华中农业大学微量元素研究中心;2华中农业大学作物遗传改良国家重点实验室, 湖北武汉430070
  • 收稿日期:2008-05-06 修回日期:2008-07-15 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 徐芳森
  • 作者简介:张海伟(1980-),男,在读博士研究生,研究方向为植物营养遗传.
  • 基金资助:

    国家重点基础研究发展计划(973计划)项目(2005CB120905);高等学校博士学科点专项科研基金项目(20050504009)

Evaluation of Phosphorus Efficiency in Rapeseed (Brassica napus L.) Recombinant Inbred Lines at Seedling Stage

ZHANG Hai-Wei1,HUANG Yu1,YE Xiang-Sheng1,XU Fang-Sen12*   

  1. 1 Microelement Research Center, Huazhong Agricultural University; 2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2008-05-06 Revised:2008-07-15 Published:2008-12-12 Published online:2008-10-10
  • Contact: XU Fang-Sen

摘要:

设置低磷P1 (5 μmol L-1)和高磷P2 (1 000 μmol L-1)处理水培甘蓝型油菜重组自交系群体的135个株系及亲本的幼苗, 以地上部干重(SDW)、根干重(RDW)、根冠比(R/S)、主根长(AMRL)、地上部磷积累量(SPU)、总磷吸收量(TPU)、磷利用效率(PUE)作为耐性指标, 调查群体各株系和亲本间对缺磷反应的差异, 并对各性状参数与磷吸收、利用效率进行相关性分析。结果表明: (1) 低磷胁迫严重抑制甘蓝型油菜苗期生长, 所调查的各性状均表现出显著差异,其中地上部干重和根干重的变异系数较大;(2) 2种处理条件下, 各株系的地上部干重、根干重、根冠比和主根长4个性状均表现出显著分离, 并呈现正态分布,低磷处理的分离更为明显;(3) 相关性分析表明, 相对地上部干重和根干重可以作为磷效率的主要评价指标,为了避免遗传因素影响, 还应考虑低磷处理下基因型各性状的绝对差异;(4) 通过上述筛选指标,确定065﹑102﹑070为候选的极端磷高效基因型, 105﹑076﹑011等为候选的极端磷低效基因型。

关键词: 低磷胁迫;甘蓝型油菜;磷效率;评价指标;苗期

Abstract:

Phosphorus (P) is one of the necessary mineral nutrients for plants. Despite high concentrations of total P in soil, its bio-available concentration is very low compared to the requirement of plants and soil organisms. P deficiency is a major factor limiting plant growth and productivity worldwide. The plant species or cultivars show significant difference in accumulation and utilizing soil P, thus, developing P-efficient crops has been proposed as an available strategy to improve the fertilizer use efficiency or to obtain high yields in low input agricultural systems. The aim of the study was to evaluate P efficiency of 135 recombinant inbred lines (RIL) derived from a cross between P-efficient cultivar and P-inefficient cultivar of rapeseed (Brassica napus L.) through investigating shoot dry weight (SDW), root dry weight (RDW), root/shoot-ratio (R/S), average maximal root length (AMRL), shoot phosphorus uptake (SPU), total phosphorus uptake (TPU) and P use efficiency (PUE) at the seedling stage in a solution culture experiment with low P (P1, 5 μmol L-1) and normal P treatments (P2, 1 000 μmol L-1). The correlation between the tested traits and P efficiency among the RIL was analyzed. The results showed that 1) low-P stress limited seriously plant growth at seedling stage, and there existed significant differences among the genotypes of the RIL compared with normal P treatment; 2) all of the four traits, SDW, RDW, R/S, and AMRL, showed normal distribution in the RIL under both P treatments and presented significant transgressive segregation; and 3) the correlation among the seven traits investigated in the study indicated that relative SDW and RDW could be used as available evaluation indices for P efficiency but the effect of genetic factor should be considered at the same time; 4) on the basis of the screening indexes, genotypes with extremely high P efficiency were screened from the population, but they should be identified on low-P soil further.

Key words: Low-P stress, Rapeseed, P efficiency, Evaluation index, Seedling stage

[1]Abelson P H. A potential phosphate crisis. Science, 1999, 283: 2015-2021
[2]Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49
[3]Batjes N H. A world data set of derived soil properties by FAO-UNESCO soil unit for global modeling. Soil Use Manag, 1997, 13: 9-16
[4]Barber S A, Walker J M, Vasey E H. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J Agric Food Chem, 1963, 11: 204-207
[5]Batten G D. A review of phosphorus efficiency in wheat. Plant Soil, 1992, 146: 163-168
[6]Graham R D. Breeding for nutritional characteristic in cereals. Adv Plant Nutr, 1984, 1: 57-102
[7]Ozturk L, Eker S, Torun B, Cakmak I. Variation in phospho-rus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil, 2005, 269: 69-80
[8]Araújo A P, Teixeira M G, Almeida D L. Variability of traits associated with phosphorus efficiency in wild and cultivated genotypes of common bean. Plant Soil, 1998, 203: 173-182
[9]Gunawardena S F B N, Danso S K A, Zapata F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil, 1993, 151: 1-9
[10]Fageria N K, Wright R J, Baligar V C. Rice cultivar evalua-tion for phosphorous use efficiency. Plant Soil, 1988, 111: 105-109
[11]Senamrayaka N. Varietal tolerance to phosphorous deficiency in wetland rice soils. Trop Agric, 1984, 140: 69-78
[12]Duan H-Y(段海燕), Wang Y-H(王运华), Xu F-S(徐芳森), Liu H(刘慧). Research on phosphorus efficiency of different Brassica napus L. cultivars. J Huazhong Agric Univ (华中农业大学学报), 2001, 20(3): 241-245(in Chinese with English abstract)
[13]Turner N C. Adaptation to water deficits: A changing per-spective. Aust J Plant Physiol, 1986, 13: 175-190
[14]Gahoonia T S, Nielsen N E. Variation in root hairs of barley cultivars doubled soil P uptake. Euphytica, 1997, 98: 177-182
[15]Ni J J, Wu P, Lou A C, Tao Q N. Rice seedling tolerance to phosphorus stress in solution culture and soil. Nutr Cycl Agroecosys, 1998, 51: 95-99
[16]Wang Y-X(王应祥), Liao H(廖红), Yan X-L(严小龙). Pre-liminary studies on the mechanisms of soybean adaptation to low P stress. Soybean Sci (大豆科学), 2003, 22(3): 208-212 (in Chinese with English abstract)
[17]Li Y-F(李永夫), Luo A-C(罗安程), Wang W-M(王为木), Yang C-D(杨长登), Yang X-E(杨肖娥). An approach to the screening index for low phosphorous tolerant rice genotype. Chin J App Ecol (应用生态学报), 2005, 16(1): 119-124 (in Chinese with English abstract)
[18]Elliott D E, Reuter D J, Reddy G D, Abbott R J. Phosphorus nutrition of spring wheat (Triticum aestivum L.): 1. Effects of phosphorus supply on plant symptoms, yield, components of yield, and plant phosphorus uptake. Aust J Agric Res, 1997, 48: 855-867
[19]Hung H H. Studies on tillering ability of rice under phosphorous stress. PhD Dissertation of A&M University, Texas, 1985
[20]Tian J, Liao H, Wang X, Yan X. Phosphorus starvation-induced expression of leaf acid phosphatase isoforms in soybean. Acta Bot Sin, 2003, 45: 1037-1042
[21]Yan X, Liao H, Trull M C, Beebe S E, Lynch J P. Induction of a major leaf acid phosphatase does not confer adaptation to low P availability in common bean. Plant Physiol, 2001, 125: 1901-1911
[22]Fawole I, Gabelman W H, Gerloff G C. Genetic control of root development in beans (Phaseolus vulgaris L.) grown under phosphorus stress. J Am Soc Hort Sci, 1982, 107: 98-100
[23]Brück H H, Becker H C, Sattelmacher B. Phosphate efficien-cies of two maize inbred lines. In: Kutschera L, Hübl E, Lichtenegger E, Persson H, Sobotik M, eds. Root Ecology and Its Practical Applications 3rd. ISRR Symp. Wien, 1992. pp 193-196
[24]Leon J, Schwarz K U. Description and application of a screening method to determine root morphology traits of ce-reals cultivars. J Agric Crop Sci, 1992, 169: 128-134
[25]Osborne L, Rengel Z. Genotypic differences in wheat for up-take and utilisation of P from iron phosphate. Aust J Agric Res, 2002, 53: 837-844
[26]Wu P(吴平), Yin L-P(印莉萍), Zhang L-P(张立平). Molecu-lar Physiology of Plant Nutrition (植物营养分子生理学). Beijing: Science Press, 2001. p 4 (in Chinese)
[27]Su J, Xiao Y M, Li M, Liu Q, Li B, Tong Y, Jia J Z, Li Z S. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil, 2006, 281: 25-36
[28]Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol, 2003, 133: 1947-1958
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!