作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2160-2167.doi: 10.3724/SP.J.1006.2008.02160

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安271018;2 中国烟草总公司郑州烟草研究院,河南郑州450001
  • 收稿日期:2008-04-11 修回日期:2008-07-14 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 王振林
  • 作者简介:梁太波(1981-)男,山东潍坊人,博士,从事作物高产优质生理生化与栽培学研究
  • 基金资助:


HMW-GS Accumulation and GMP Size Distribution in Grains of SN12 Grown in Different Soil Conditions

LIANG Tai-Bo12,YIN Yan-Ping1,CAI Rui-Guo1,YAN Su-Hui1,LI Wen-Yang1,GENG Qing-Hui1,WANG Ping1,WU Yun-Hai1,LI Yong1,WANG Zhen-Lin1*   

  1. 1 Agronomy College, Shandong Agricultural University / National Key Laboratory of Crop Biology, Tai’an 271018, Shandong; 2 Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, Henan, China
  • Received:2008-04-11 Revised:2008-07-14 Published:2008-12-12 Published online:2008-10-10
  • Contact: WANG Zhen-Lin


在沙壤、中壤和黏壤3种质地土壤条件下,以优质强筋小麦品种山农12为材料研究了小麦强势与弱势籽粒高分子量谷蛋白亚基(HMW-GS)积累特征及其与谷蛋白大聚合体(GMP)粒度分布的关系。结果表明,3种质地土壤上,小麦强、弱势籽粒HMW-GS花后14 d均已形成,强势粒HMW-GS含量明显高于弱势粒,说明强势粒具有较强的HMW-GS积累能力。小麦籽粒HMW-GS含量和GMP含量均表现为黏壤土>中壤土>沙壤土,说明黏壤土有利于HMW-GS的积累。小麦GMP粒径分布范围在0.37~245 μm之间;数目分布呈单峰曲线,体积和表面积分布呈双峰曲线。小麦强势粒GMP>100 μm颗粒数目百分比和体积百分比均显著高于弱势粒,强势粒具有更多的大粒径GMP颗粒。小麦HMW-GS含量和GMP含量与<10 μm和<100 μm GMP 颗粒体积百分比均呈显著或极显著负相关,与>100 μm GMP颗粒体积百分比呈显著或极显著正相关,说明大粒径GMP颗粒具有较高的HMW-GS含量。

关键词: 小麦, 高分子量谷蛋白亚基(HMW-GS), 谷蛋白大聚合体(GMP), 土壤质地, 强势粒, 弱势粒


Glutenin macropolymer (GMP), the important component of wheat (Triticum aestivum L.) glutenin polymer, consists of high molecular weight gultenin subunits (HMW-GS) and low molecular weight gultenin subunits (LMW-GS). Accumulations of HMW-GS and GMP play key roles in grain quality of wheat. According to recent studies, GMP is a particle network in endosperm of wheat. The content of GMP is affected by HMW-GS accumulation and environment factors. But to date, there are few reports about the relationship between HMW-GS accumulation and GMP particle distribution. To study the HMW-GS accumulation and its relation to GMP particle distribution, a pool experiment was carried out with wheat cultivar Shannong 12 grown under three soil textures. Forty spikes was sampled at 7, 14, 21, 28, and 35 d after anthesis, and partitioned into two groups, superior grain (the 2nd grain from the basal part of a spikelet) and inferior grain (the 4th grain from the basal part of a spikelet). HMW-GS was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The result showed that all HMW-GS already formed at 14 d after anthesis both in superior grain and inferior grain. Higher HMW-GS content showed that superior grain had strong HMW-GS accumulating ability than inferior grain. HMW-GS accumulation and GMP content of wheat grown in clay loam soil were higher than those in sandy and loam soil, which indicated that clay loam soil was suitable for accumulating of HMW-GS. The diameter of GMP particle was in 0.37–245 μm, it changed in the pattern of two-peak curve in volume and surface area distribution, while single-peak curve in number distribution of GMP particle. The percentages of number and volume of >100 μm GMP particle were higher in superior grain than in inferior grain. The contents of HMW-GS and GMP were negatively correlated with GMP particle volume of <10 μm and <100 μm, but positively correlated with that of >100 μm. It is suggested that larger GMP particle has more HMW-GS content.

Key words: Wheat (Triticum aestivum L.), High molecular weight glutenin subunits (HMW-GS), Glutenin macropolymer (GMP), Size distribution, Soil texture, Superior grain, Inferior grain

[1]Sun H(孙辉), Yao D-N(姚大年), Liu G-T(刘广田), Zhang S-Z(张树榛). Study on relationships of wheat protein to bak-ing quality: I. Relationships of protein and protein fraction contents to baking quality. J Chin Cereals Oils Assoc (中国粮油学报), 2001, 16(2): 28-30 (in Chinese with English ab-stract)
[2]Sapirstein H D, Fu B X. Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to bread making quality. Cereal Chem, 1998, 75: 500-507
[3]Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李宝云), Liu G-T(刘广田), Zhang S-Z(张树榛). Correlation between content of glutenin macropolymer (GMP) in wheat and baking quality. J Chin Cereals Oils Assoc (中国粮油学报), 1998, 13(6): 13-16(in Chinese with English abstract)
[4]Zhao H-X(赵惠贤), Hu S-W(胡胜武), Ji W-Q(吉万全), Xue X-Z(薛秀庄), Guo A-G(郭蔼光), Mares D. Study on rela-tionship between the size distribution of glutenin polymeric protein and wheat flour mixing properties. Sci Agric Sin (中国农业科学), 2001, 34(5): 465-468(in Chinese with English abstract)
[5]Don C, Lichtendonk W, Plijter J J, Hamer R J. Glutenin macropolymer: A gel formed by glutenin particles. J Cereal Sci, 2003, 37: 1-7
[6]Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R J. Heat stress and genotype affect the glutenin particles of the glu-tenin macropolymer-gel fraction. J Cereal Sci, 2005, 42: 69-80
[7]Deng Z-Y(邓志英), Tian J-C(田纪春), Zhang Y-X(张永祥), Wang Y-X(王延训). Formation time and accumulation inten-sity of HMW-GS and LMW-GS and the relationship with SDS-sedimentation volume in winter wheat. Acta Agron Sin (作物学报), 2005, 31(3): 308-315(in Chinese with English abstract)
[8]Gianibelli M C, Gupta R B, Lafiandra D, Margiotta B, Macritchie F. Polymorphism of high Mr glutenin subunits in Triticum tauschii: Characterization by chromatography and electrophoretic methods. J Cereal Sci, 2001, 33: 39-52
[9]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing: I. Relationships be-tween glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, 23: 103-111
[10]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affects the properties of glutenin particles in GMP and thus flour quality. J Cereal Sci, 2006, 44: 127-130
[11]Yue H-W(岳鸿伟), Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星), Jiang D(姜东). Effects of nitro-gen rate on accumulations of HMW-GS and GMP in wheat grain. Acta Agron Sin (作物学报), 2006, 32(10): 1678-1683 (in Chinese with English abstract)
[12]Sun X(孙霞), Wu X-J(吴秀菊), Hu S-L(胡尚连), Li W-X(李文雄). Effects of different nitrogen sources on HMW glutenin aggregates in spring wheat with different HMW-GS composi-tion. Acta Agron Sin (作物学报), 2005, 31(3): 308-315(in Chinese with English abstract)
[13]Zhao J-Y(赵俊晔), Yu Z-W(于振文). Effects of nitrogen fer-tilizer rate on nitrogen metabolism and protein synthesis of superior and inferior wheat kernel. Sci Agric Sin (中国农业科学), 2005, 31(4): 463-468(in Chinese with English abstract)
[14]Wang R-Y(王瑞英), Yu Z-W(于振文), Pan Q-M(潘庆民), Xu Y-M(许玉敏). Changes of endogenous plant hormone con-tents during grain development in wheat. Acta Agron Sin (作物学报), 1999, 25(2): 227-231(in Chinese with English ab-stract)
[15]Liang R-Q(梁荣奇), Zhang Y-R(张义荣), You M-S(尤明山), Mao S-F(毛善锋), Song J-M(宋建民), Liu G-T(刘广田). Multistacking SDS-PAGE for wheat glutenin polymer and its relation to bread making quality. Acta Agron Sin (作物学报), 2002, 28(5): 609-614(in Chinese with English abstract)
[16]Don C, Lichtendonk W J, Plijter J J, Vliet T, Hamer R J. The effect of mixing on glutenin particle properties: aggregation factors that affect gluten function in dough. J Cereal Sci, 2005, 41: 69-83
[17]Ru Z-G(茹振钢), Li G(李淦), Hu T-Z(胡铁柱), Li L-B(栗利波). Analysis of grain weight and quality at different floret position of strong glutinin wheat. J Triticeae Crops (麦类作物学报), 2006, 26(5): 134-136(in Chinese with English ab-stract)
[18]Li J-C(李金才), Wei F-Z(魏凤珍), Ding X-P(丁显萍). Rela-tionship between vascular bundle system of rachis and ra-chilla and ear productivity in wheat. Acta Agron Sin (作物学报), 1999, 25(3): 315-319(in Chinese with English abstract)
[19]Li C-H(李潮海), Li S-L(李胜利), Wang Q(王群), Hou S(侯松), Jing J(荆棘). Effect of different textural soils on root dynamic growth in corn. Sci Agric Sin (中国农业科学), 2004, 37(9): 1334-1340(in Chinese with English abstract)
[20]Masoni A, Ercoli L, Mariotti M, Arduini I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur J Agron, 2007, 26: 179-186
[21]Wang F-C(王凤成), Zhu J-B(朱金宝), Khan K, Brien L O, Chen W-Y(陈万义). The composition and quantity of wheat glutenin subunits in relation to high molecular weight glu-tenin polymers and their effects on bread making quality. J Chin Cereals Oils Assoc (中国粮油学报), 2004, 19(3): 13-17(in Chinese with English abstract)
[22]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats: I. Effects of variation in the quan-tity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23-41
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Full text



No Suggested Reading articles found!