欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (10): 1805-1811.doi: 10.3724/SP.J.1006.2008.01805

• 耕作栽培·生理生化 • 上一篇    下一篇

青稞的光合特性及光破坏防御机制

程明1,2;李志强3;姜闯道1,*;石雷1;唐宇丹1;张金政1   

  1. 1 中国科学院植物研究所, 北京100093; 2 中国科学院研究生院, 北京100039; 3 北京市农业职业技术学院, 北京102442
  • 收稿日期:2008-01-20 修回日期:1900-01-01 出版日期:2008-10-12 网络出版日期:2008-10-12
  • 通讯作者: 姜闯道

Photosynthetic Characteristics and Photoprotective Mechanisms in Highland Barley

CHENG Ming12,LI Zhi-Qiang3,JIANG Chuang-Dao1*,SHI Lei1,TANG Yu-Dan1,ZHANG Jin-Zheng1   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093; 2 Graduate School of Chinese Academy of Sciences, Beijing 100049; 3 Beijing Vocational College of Agriculture, Beijing 102442, China
  • Received:2008-01-20 Revised:1900-01-01 Published:2008-10-12 Published online:2008-10-12
  • Contact: JIANG Chuang-Dao

摘要: 通过气体交换、荧光猝灭动力学以及反射光谱等技术研究了两个青稞(Hordeum vulgare L.)品种的光合特性及激发能分配。结果表明, 青稞的光饱和点1 000 μmol m-2 s-1左右。在0~500 mmol m-2 s-1的光强范围里, 青稞叶片的光呼吸(Pr)随着光强升高而增加; 光强超过500 mmol m-2 s-1以后, 光呼吸变化不明显。光呼吸占总光合的比例(Pr/Pm)随光强增强下降。随着光强增强, 光系统II开放反应中心转化效率(Fv′/Fm′), 光系统II实际光化学量子效率(ΦPSII), 光化学猝灭系数(qP)不断降低而青稞叶片的非光化学猝灭(NPQ)持续升高, 说明越来越多的光能以热的形式耗散掉。光谱分析表明△PRI随着青稞叶片暴露于光下的时间迅速增大。因此, 光呼吸不是青稞主要的光破坏防御机制, 依赖叶黄素循环的热耗散可能是田间青稞耗散过剩光能的主要途径。

关键词: 青稞, 强光, 光呼吸, 热耗散

Abstract: As a local crop of Qinghai-Tibet Plateau, highland barley (Hordeum vulgare L.) has acclimated to the typical habitat with strong light and low O2 to CO2 ratio. Low O2 to CO2 ratio may have a great influence on photorespiration which plays an important role in protecting photosynthetic apparatus against photoinhibition. In this study, we hope to know whether photorespiration plays an important role in photoprotection of highland barley and what are the main photoprotective mechanisms of highland barley. Gas exchange, fluorescence quenching kinetics and reflectance spectrum were investigated to explore the photosynthetic characteristic and allocation of excitated energy in two highland barley cultivars. Results showed that light saturation point of highland barley was about 1 000 μmol m-2 s-1. Photorespiration rate (Pr) increased with light intensity increasing while it did not change significantly above 500 mmol m-2 s-1. The percentage of photorespiration to total photosynthesis (Pr/Pm) declined gradually with the increase of light intensity. The efficiency of open centers of photosystem II (Fv’/Fm’), actual photosystem II efficiency (ΦPSII) and photochemical quenching (qP) all declined with the increase of light intensity; non-photochemical quenching increased with light intensity increasing, indicating that more and more excited energy dissipated as thermal dissipation. Spectrum analysis showed that the change of photochemical reflectance index (△PRI) increased significantly when fully dark-adapted plants were suddenly exposed to light. On these bases, we concluded that photorespiration is not the main pathway for highland barley to relieve strong light stress; thermal dissipation relying on xanthophyll cycle may play an important role in dissipating excessive excited energy in highland barley.

Key words: Highland barley, Strong light, Photorespiration, Thermal dissipation

[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[4] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[5] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[6] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
[7] 姚晓华,吴昆仑*. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应[J]. 作物学报, 2016, 42(03): 399-406.
[8] 孟亚雄,孟祎林,汪军成,司二静,张海娟,任盼荣,马小乐,李葆春, 杨轲,王化俊. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 作物学报, 2016, 42(02): 180-189.
[9] 周连杰,谢彦庆,徐文,郭骞欢,戴双,赵世杰,宋健民. 去除遮阴后自然强光对小偃54和8602及其杂交后代光合特性的影响[J]. 作物学报, 2015, 41(05): 813-819.
[10] 王春萍,高丽鹃,潘志芬,尼玛扎西,唐亚伟,曾兴权,李俏,邓光兵,龙海,余懋群. 青藏高原青稞农家品种淀粉颗粒结合蛋白组成及GBSSI基因5′前导序列的多态性[J]. 作物学报, 2012, 38(07): 1148-1154.
[11] 吴昆仑, 赵媛, 迟德钊. 青稞Wx基因多态性与直链淀粉含量的关系[J]. 作物学报, 2012, 38(01): 71-79.
[12] 李宏伟,李滨,郑琪,李振声. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化[J]. 作物学报, 2010, 36(3): 449-456.
[13] 何涛;贾敬芬. 青稞hblt4.2基因的克隆及功能分析[J]. 作物学报, 2009, 35(2): 295-300.
[14] 赵宇玮;郝建国;步怀宇;王英娟;贾敬芬. 青稞HvBADH1基因的克隆及其转化烟草的初步研究[J]. 作物学报, 2008, 34(07): 1153-1159.
[15] 孟凡磊;强小林;佘奎军;唐亚伟;胡银岗. 西藏主要农区青稞品种的遗传多样性分析[J]. 作物学报, 2007, 33(11): 1910-1914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!