α-脱甲基酶,GhCYP51G1,油菜素类固醇," /> α-脱甲基酶,GhCYP51G1,油菜素类固醇,"/> 棉花中一个钝叶醇14α-脱甲基酶基因同源基因(<em>GhCYP51G1</em>)的克隆、序列特征和表达分析
欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1194-1201.doi: 10.3724/SP.J.1006.2009.01194

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花中一个钝叶醇14α-脱甲基酶基因同源基因(GhCYP51G1)的克隆、序列特征和表达分析

谭琨岭,胡明瑜,李先碧,覃珊,李德谋,罗小英,赵娟,臧振乐,李宝利,裴炎,罗明*   

  1. 西南大学生物技术中心/农业部生物技术与作物品质改良重点开放实验室,重庆400716
  • 收稿日期:2008-11-21 修回日期:2009-03-23 出版日期:2009-07-12 网络出版日期:2009-05-18
  • 通讯作者: 罗明,E-mail:luo0424@126.com;luomingyuan@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30530490,30370904,30671258),教育部新世纪优秀人才资助计划(NCET-07-0712),教育部博士点(20040625010)项目资助。

Molecular Identification and Expression Analysis of  GhCYP51G1 Gene,a Homologue of Obtusifoliol-14α-demethylase Gene, from Upland Cotton(Gossypium hirsutum L.)

TAN Kun-Ling,HU Ming-Yu,LI Xian-Bi,QIN Shan,LI De-Mou,LUO Xiao-Ying,ZHAO Juan,ZANG Zhen-Le,LI Bao-Li,PEI Yan,LUO Ming*   

  1. Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center,Southwest University,Chongqing 400716,China
  • Received:2008-11-21 Revised:2009-03-23 Published:2009-07-12 Published online:2009-05-18
  • Contact: LUO Ming,E-mail:luo0424@126.com;luomingyuan@swu.edu.cn

摘要:

为研究植物固醇在棉花纤维细胞生长发育中的作用和信号传导机制,通过筛选棉花EST数据库并对目标EST序列进行整合和分析,从陆地棉栽培品种徐州142正在发育的纤维中克隆了植物固醇合成途径的重要酶基因——钝叶醇14α-脱甲基酶基因的同源基因,命名为GhCYP51G1 (GenBank登录号为EU727154)。该基因编码486个氨基酸残基,其分子量和等电点分别为55.2 kD8.87。推导的氨基酸序列与烟草、马铃薯和葡萄等物种中CYP51家族成员有较高的同源性。而且具有钝叶醇14α-脱甲基酶序列中的典型保守结构域,如多个底物结合位点和血红素结合域。说明该克隆基因是钝叶醇14α-脱甲基酶基因的同源基因。实时定量RT-PCR的结果表明GhCYP51G1基因在快速伸长期的纤维中具有较高的表达水平,而在子叶、雌蕊和雄蕊以及开花后6 d胚珠、开花后0 d2 d的胚珠纤维中表达水平较低。在开花后8 d的纤维细胞中GhCYP51G1的表达水平最高,这些结果说明该基因在纤维细胞的伸长生长中具有重要作用。同时在纤维生长过程中,由于生长素能够下调GhCYP51G1基因的表达,暗示植物固醇在植物激素,特别是油菜素类固醇物质和生长素的相互作用中具有一定作用。

关键词: 棉花纤维, 植物固醇, α-脱甲基酶')">钝叶醇14α-脱甲基酶, GhCYP51G1, 油菜素类固醇

Abstract:

Besides as a precursor of BL biosynthesis, more and more evidences support the hypothesis that phytosterols possess a BL-independent signaling pathway. Furthermore, the obtusifoliol is regarded as a signal molecule in sterol signaling. To understand the effects of phytosterols on the development of cotton (Gossypium hirsutum L.) fibers and the molecular basic of sterol signaling in cotton fiber growth, we cloned a gene encoding a homologue of obtusifoliol 14α-demethylase from developing fibers of upland cotton cv. Xuzhou 142 through screening cotton fiber EST (Express Sequence Tag) database and contigging the candidate ESTs. The full length of GhCYP51G1 (GenBank accession No. EU727154) was 1 710 bp, including a 160 bp 5'-untranslated region (UTR), a 1461 bp open reading frame (ORF), and an 89 bp 3'-UTR. The GhCYP51G1 encoded a polypeptide of 486 amino acid residues with a predicted molecular mass of 55.2 kD. The deduced amino acid sequences had high homology with the members of CYP51 family in plant kingdom. Moreover, many typical conserved regions were characterized as the obtusifoliol 14α-demethylase, such as substrate recognition sites (SRS) and heme-binding region presented in the deduced protein. Quantitative real-time RT-PCR analysis revealed that the higher expression levels of GhCYP51G1 gene were detected in 8-DPA, 12-DPA, 18-DPA fibers, and 12-DPA ovules. These results indicate that GhCYP15G1 gene plays an important role in fiber elongation. Furthermore, Auxin significantly down regulates the expression level of GhCYP51G1 in cotton fiber growth. This suggested that phytosterols play a role in the interaction of plant hormones, especially brassinosteroids and auxin.

Key words: Cotton fiber, Phytosterols, Obtusifoliol 14α-demethylase, GhCYP51G1, Brassinosteroids


[1] Basra A S, Malik C P. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65-113

[2] Tiwari S C, Wilkins T A. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot, 1995, 73: 746-757

[3] Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361-1366

[4] Kasukabe Y, Fujisawa Y, Nishiguchi K, Maekawa S, Allen Y, Dale R.. Production of Cotton Fiber with Improved Fiber Characteristics. 2001, United States Patent Application number 20010018773

[5] Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol, 2004, 54: 221-232

[6] Sun Y, Allen R D. Functional analysis of the BIN2 genes of cotton. Mol. Genet. Genomics. 2005, 274: 51-59

[7] Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651-664

[8] Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5a-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J, 2007, 51: 419-430

[9] Luo M, Xiao Z Y, Xiao Y H, Li X B, Hou L, Zhou J P, Hu M Y, Pei Y. Cloning and Expression Analysis of a Brassinosteroid Biosynthetic Enzyme Gene, GhDWF1, from Cotton (Gossypium hirsuturm L.). Agric Sci China, 2007, 6(11): 1297-1305

[10] Luo M, Tan K L, Xiao Z Y, Hu M Y, Liao P, Chen K J. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.). J Genet Genomics, 2008, 35: 357-363

[11] Schaeffer A., Bronner R., Benveniste P, Schaller H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2,1. Plant J, 2001, 25: 605-615

[12] Carland F M, Fujioka S, Takatsuto S, Yoshida S, Nelson T. The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell, 2002, 14: 2045-2058

[13] Clouse S D. Plant development: A role for sterols in embryogenesis. Curr Biol, 2000, 10: 601-604

[14] Clouse S D. Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell, 2002, 14: 1995-2000

[15] Schrick K, Fujioka S, Takatsuto S, Stierhof Y D, Stransky H, Yoshida S, Jurgens G. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J, 2004, 38: 227-243

[16] Peng L C, Kawagoe Y, Hogan P, Delmer D. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science, 2002, 295: 147-150

[17] O’Brien M, Chantha S C, Rahier A, Matton D P. Lipid signaling in plants. Cloning and expression analysis of the obtusifoliol 14α-demethylase from Solanum chacoense Bitt., a pollination- and fertilization-induced gene with both obtusifoliol and lanosterol demethylase activity. Plant Physiol, 2005, 139: 734-749

[18] Xiao Y-H(肖月华), Luo M(罗明), Fang W-G(方卫国), Luo K-M(罗克明), Hou L(侯磊), Luo X-Y(罗小英), Pei Y(裴炎). PCR walking in cotton genome using YADE method. Acta Genet Sin (遗传学报), 2002, 29: 62-66 (in Chinese with an English abstract)

[19] Luo M(罗明), Xiao Y-H(肖月华), Hou L(侯磊), Luo X-Y(罗小英), Li D-M(李德谋), Pei Y(裴炎). Cloning and expression analysis of a LIM-domain protein gene from cotton (Gossypium hirsuturm L.). Acta Genet Sin (遗传学报), 2003, 30: 175-182 (in Chinese with an English abstract).

[20] Beasley C A, Ting I P. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot, 1973, 60: 130-139

[21] Beasley C A, Ting I P. The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am J Bot, 1974, 61: 188-194

[22] Bak S, Kahn R A, Olsen C E, Halkier B A. Cloning and expression in Escherchia coli of the obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14α-demethylases (CYP51) from fungi and mammals. Plant J, 1997, 11: 191-201

[23] Lepesheva G I, Waterman M R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochimica et Biophysica Acta. 2007, 1770: 467-477

[24] Clouse S D, Sasse J M. Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427-451

[25] Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S. Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J, 2006, 45: 193-205

[26] Bao F, Shen J J, Brady S R, Muday G K, Asami T, Yang Z B. Brassinosteroids Interact with Auxin to Promote Lateral Root Development in Arabidopsis. Plant Physiol, 2004, 134: 1624-1631

[27] He J X, Fujioka S, Li T C, Kang S G, Seto H, Takatsuto S, Yoshida S, Jang J C. Sterols Regulate Development and Gene Expression in Arabidopsis1. Plant Physiol, 2003, 131: 1258-1269
[1] 胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆. 棉花纤维中木质素的相对分子量[J]. 作物学报, 2017, 43(06): 940-944.
[2] 王娟, 倪志勇, 吕萌, 李波, 范玲. 棉花纤维伸长期与次生壁增厚期蛋白质组比较[J]. 作物学报, 2010, 36(11): 2004-2010.
[3] 朱一超;张天真;贺亚军;郭旺珍. 棉花纤维伸长发育期的基因表达分析[J]. 作物学报, 2006, 32(11): 1656-1662.
[4] 刘继华;尹承佾;王永民;于凤英;贾景农;边栋材. 棉花纤维超分子结构参数的遗传分析[J]. 作物学报, 1994, 20(03): 375-384.
[5] 刘继华;尹承佾;于凤英;贾景农;边栋材. 外源激素对棉纤维超超结构及纤维强度的影响[J]. 作物学报, 1994, 20(01): 120-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!