欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 2004-2010.doi: 10.3724/SP.J.1006.2010.02004

• 研究简报 • 上一篇    

棉花纤维伸长期与次生壁增厚期蛋白质组比较

王娟,倪志勇,吕萌,李波,范玲*   

  1. 新疆农业科学院核技术生物技术研究所,新疆乌鲁木齐 830091
  • 收稿日期:2010-02-02 修回日期:2010-06-29 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 范玲, E-mail: fanling@ xaas.ac.cn
  • 基金资助:

     本研究由国家高技术研究发展计划(863)项目(2006AA10Z184),农业部转基因重大专项课题(2009ZX08005-011B),国家自然科学基金项目(30660088)和新疆维吾尔自治区高技术研究发展计划项目(200611101)资助。

Comparison of Proteome in Cotton Fiber Cell between Elongation and Secondary Wall Thickening Stages

WANG Juan,NI Zhi-Yong,LÜ Meng,LI Bo,FAN Ling   

  1. Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
  • Received:2010-02-02 Revised:2010-06-29 Published:2010-11-12 Published online:2010-08-30
  • Contact: FAN Ling,E-mail:fanling@ xaas.ac.cn

摘要: 以陆地棉徐州142为材料,比较了3种不同棉花纤维蛋白质提取方法;利用双向电泳技术比较棉花纤维伸长及初生壁形成期(10 DPA)和次生壁增厚期(25 DPA)蛋白质组的变化;利用PDQuest软件分析各个差异蛋白在10 DPA和25 DPA棉花纤维中的相对表达量,选取质量好、实验重复性高的蛋白质点15个进行MALDI-TOF MS鉴定;根据目的蛋白核苷酸序列设计特异引物,对5种差异蛋白进行半定量RT-PCR分析。结果表明,利用饱和酚-甲醇醋酸铵法提取的棉花纤维蛋白,其蛋白含量较高,且SDS-PAGE电泳条带清晰;进行MALDI-TOF MS鉴定的15个差异蛋白,于NCBI上进行数据查询,分别属于F-box家族蛋白、肌动蛋白、β-微管蛋白、F1-ATP合成酶、ATP酶β亚基、膜联蛋白、磷酸甘油酸酯激酶I、胞质苹果酸脱氢酶、S-腺苷-L-高半胱氨酸水解酶、谷氨酰胺合成酶、Cu-Zn超氧化物歧化酶、profilin、4-香豆酸辅酶A连接酶等。查询结果表明,上述蛋白参与能量代谢、碳代谢、细胞周期调控和发育等。

关键词: 棉花纤维, 次生壁, 蛋白质组, MALDI-TOF-MS

Abstract: Three cotton fiber protein extraction methods were compared using Gossypium hirsutum, cv. Xuzhou 142. Two-dimensional polyacrylamide gel electrophoresis was used to exhibit the protein profile differences between two stages of cotton fiber cells developments. The two stages are cell elongating and synthesizing primary cell walls at 10 days postanthesis (DPA), and the secondary cell wall thickening at 25 DPA. PDQuest8.0 software was used to analysis the relative abundance of different proteins between 10 and 25 DPA cotton fibers. Fifteen of the proteins which had good quality and reproducibility were identified by MALDI-TOF-MS. Gene specific PCR primers were designed according to the interest proteins nucleotide sequences. Semiquantitative RT-PCR was used to detect the five different proteins. The results showed that, the phenol-methanol-ammonium acetate extraction of cotton fiber proteins was the best method among three methods with a extract higher amount of protein extracted and clean SDS-PAGE loading pattern. According to the NCBI database searching results, the differentially expressed proteins were F-box family proteins, actin, β-tubulin, F1-ATP synthase subunit beta, annexin, cytosolic phosphoglycerate kinase 1, cytosolic malate dehydrogenase, adenosylhomocysteinase, putative glutamine synthetase, ATPase subunit, profilin, copper/zinc superoxide dismutase and putative 4-coumarate coA ligase. These proteins are involved in a wide range of physiological processes, such as energy metabolism, carbohydrate metabolism, cell cycle control and development.

Key words: Cotton fiber, Secondary wall, Proteome, MALDI-TOF-MS

[1]Gallardo K, Job C, Groot S P. Proteomics of Arabidopsis seed germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837
[2]Watson B S, Asirvatham V S, Wang L. Mapping the proteome of barrel medic (Medicago truncatula). Plant Plysiol, 2003, 131: 1104–1123
[3]Basra A S, Malik C P. Development of the cotton fiber. Intl Rev Cytol, 1984, 89: 65–113
[4]Graves D A, Stewart J M. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta, 1988, 175: 254–258
[5]Graves D A, Stewart J M. Analysis of the protein constituency of developing cotton fibers. J Exp Bot, 1988, 39: 59–69
[6]Turley R B, Ferguson D L. Changes of ovule proteins during fiber development in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695–702
[7]Furguson D L, Turley R B, Triplett B A, Meredith W R. Comparison of protein profiles during cotton (Gossypium hirsutum L.) fiber cell development with partial squences of two proteins. J Agric Food Chem, 1996, 44: 4022–4027
[8]Liu K(刘康), Hu F-P(胡凤萍), Zhang T-Z(张天真). Effect of two methods of protein extraction from cotton ovule and fiber. Cotton Sci (棉花学报), 2005, 17(6): 323–327 (in Chinese with English abstract)
[9]Xu Z-J(徐子剑), Shu X(舒晓), Yang Y-W(杨亦玮), Liu J-Y(刘进元). Three techniques on protein extraction from cotton fibers and two-dimensional eletrophoresis. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2006, 22(1): 77–80 (in Chinese with English abstract)
[10]Wu Y T, Liu J Y. Molecular cloning and characterization of a cotton glucuronosyltranferase gene. J Plant Physiol, 2005: 573–582
[11]Yang Y W, Bian S M, Yao Y, Liu J Y. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res, 2008, 7: 4623–4637
[12]Delanghe E A L. Lint Development. In: Mauney J R, Stewart J M eds. Cotton Physiology. Memphis, TN, US: Cotton Foundation. 1986. pp 325–349
[13]John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proc Natl Acad Sci USA, 1992, 89: 5769–5773
[14]Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of alpha- and beta-tubulin isotypes during cotton fiber development. Plant Physiol, 1994, 105: 1347–1353
[15]Savithiry N, Xu C P, Thomas J C, Wesley M G. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem, 2005, 342: 214–220
[16]Cristina M V, Katja S. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics, 2006, 6: 4166–4175
[17]Zhang S Q, Liu Y D. Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell, 2001, 13: 1877–1889
[18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254
[19]Wang X C, Li X F, Li Y X. A modified coomassie brilliant blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnol Lett, 2007, 29: 1599–1603
[20]Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7–12
[21]Li C-M(李春梅), Yang S-P(杨守萍), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). Comparative proteomic analysis of wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Prog Biochem Biophys (生物化学与生物物理进展), 2007, 34(12): 1296–1302 (in Chinese with English abstract)
[22]Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7–12
[23]Yao Y, Yang Y W, Liu J Y. An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis, 2006, 27: 4559–4569
[24]Herbst A, Hemann M T, Tworkowski K A. A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep, 2005, 6: 177–183
[25]Matsuzawa S I, Reed J C. Siah-1, SIP and Ebi collaborate in a novel pathway for B-Catenin degradation linked to p53 responses. Mol Cell, 2001, 7: 915–926
[26]Yu H-C(于海川), Wu J(吴娇), Cui B-M(崔百明), Sun J-B(孙建波), Peng M(彭明). Cloning and expression analysis of two new genes encoding F-box proteins in cotton (Gossypium hirsutum L.). Cotton Sci (棉花学报), 2008, 20(2): 99–104 (in Chinese with English abstract)
[27]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875
[28]Fan X-P(范小平), Fan B-H(范博红), Li X-B(李学宝), Yang W-C(杨维才), Xu Z-Q(徐子勤). Transformation of GhACT1 RNAi and its effect on fiber length of cotton(Gossypium hirsutum L.). Acta Agric Boreali Sin (华北农学报), 2008, 23(5): 73–75 (in Chinese with English abstract)
[29]Wang H Y, Yu Y, Chen Z L. Functional characterization of Gosspium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Charaeterization of in vivo functions of a cotton profilin gene. Planta, 2005, 222: 594–603
[30]He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot, 2008, 59: 2687–2695
[31]Seagull, R.W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro fiber development. J Cell Sci, 1992, 101: 561–577
[32]Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: A potential role in the regulation of callose synthase. Plant J 1993, 3: 763–772
[33]Shin H, Brownm R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol, 1999, 3: 925–934
[34]Dhindsa R S, Beasley C A, Ting I P. Osmoregulation in cotton fiber: Accumulation of potassium and malate during growth. Plant Physiol, 1975, 56: 394–398
[35]Basra A S, Malik C P. Dark metabolism of CO2 during fibre elongation of two cottons differing in fibre lengths. J Exp Bot, 1983, 34: 1–9
[36]Wafler U, Meie H. Enzyme activities in developing cotton fibres. Plant Physiol Biochem, 1994, 32: 697–702
[37]She Y-B(佘义斌), Zhu Y-C(朱一超), Zhang T-Z(张天真). Cloning, expression, and mapping of S-adenosyl-L-homocysteine hydrolase (GhSAHH) cDNA in cotton. Acta Agron Sin (作物学报), 2008, 34(6): 958–964 (in Chinese with English abstract)
[38]Dirk B, Norbert L, Wolfgang B. Induction of heat shock proteins in response to primary alcohols in Acinetobaeter calcoaceticus. Electrophoresis, 1999, 20: 781–789
[1] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[2] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[3] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[4] 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69.
[5] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[6] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[7] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[8] 胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆. 棉花纤维中木质素的相对分子量[J]. 作物学报, 2017, 43(06): 940-944.
[9] 于涛,李耕,张成芬,刘鹏,董树亭,张吉旺,赵斌. 玉米籽粒早期发育相关蛋白的差异表达特性[J]. 作物学报, 2017, 43(04): 608-619.
[10] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[11] 韩平安,逯晓萍,米福贵,张瑞霞,李美娜,薛春雷,董婧,丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析[J]. 作物学报, 2016, 42(05): 696-705.
[12] 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254.
[13] 兰海,冷亦峰,周树峰,刘坚,荣廷昭. 玉米种子休眠相关蛋白的鉴定与分析[J]. 作物学报, 2014, 40(10): 1865-1871.
[14] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[15] 宋素洁,古佳玉,郭会君,赵林姝,赵世荣,李军辉,赵宝存,刘录祥. 小麦叶绿素缺失突变体Mt6172及其野生型叶片蛋白质组学双向差异凝胶电泳分析[J]. 作物学报, 2012, 38(09): 1592-1606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!