作物学报 ›› 2010, Vol. 36 ›› Issue (11): 2004-2010.doi: 10.3724/SP.J.1006.2010.02004
• 研究简报 • 上一篇
王娟,倪志勇,吕萌,李波,范玲*
WANG Juan,NI Zhi-Yong,LÜ Meng,LI Bo,FAN Ling
摘要: 以陆地棉徐州142为材料,比较了3种不同棉花纤维蛋白质提取方法;利用双向电泳技术比较棉花纤维伸长及初生壁形成期(10 DPA)和次生壁增厚期(25 DPA)蛋白质组的变化;利用PDQuest软件分析各个差异蛋白在10 DPA和25 DPA棉花纤维中的相对表达量,选取质量好、实验重复性高的蛋白质点15个进行MALDI-TOF MS鉴定;根据目的蛋白核苷酸序列设计特异引物,对5种差异蛋白进行半定量RT-PCR分析。结果表明,利用饱和酚-甲醇醋酸铵法提取的棉花纤维蛋白,其蛋白含量较高,且SDS-PAGE电泳条带清晰;进行MALDI-TOF MS鉴定的15个差异蛋白,于NCBI上进行数据查询,分别属于F-box家族蛋白、肌动蛋白、β-微管蛋白、F1-ATP合成酶、ATP酶β亚基、膜联蛋白、磷酸甘油酸酯激酶I、胞质苹果酸脱氢酶、S-腺苷-L-高半胱氨酸水解酶、谷氨酰胺合成酶、Cu-Zn超氧化物歧化酶、profilin、4-香豆酸辅酶A连接酶等。查询结果表明,上述蛋白参与能量代谢、碳代谢、细胞周期调控和发育等。
[1]Gallardo K, Job C, Groot S P. Proteomics of Arabidopsis seed germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837 [2]Watson B S, Asirvatham V S, Wang L. Mapping the proteome of barrel medic (Medicago truncatula). Plant Plysiol, 2003, 131: 1104–1123 [3]Basra A S, Malik C P. Development of the cotton fiber. Intl Rev Cytol, 1984, 89: 65–113 [4]Graves D A, Stewart J M. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta, 1988, 175: 254–258 [5]Graves D A, Stewart J M. Analysis of the protein constituency of developing cotton fibers. J Exp Bot, 1988, 39: 59–69 [6]Turley R B, Ferguson D L. Changes of ovule proteins during fiber development in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695–702 [7]Furguson D L, Turley R B, Triplett B A, Meredith W R. Comparison of protein profiles during cotton (Gossypium hirsutum L.) fiber cell development with partial squences of two proteins. J Agric Food Chem, 1996, 44: 4022–4027 [8]Liu K(刘康), Hu F-P(胡凤萍), Zhang T-Z(张天真). Effect of two methods of protein extraction from cotton ovule and fiber. Cotton Sci (棉花学报), 2005, 17(6): 323–327 (in Chinese with English abstract) [9]Xu Z-J(徐子剑), Shu X(舒晓), Yang Y-W(杨亦玮), Liu J-Y(刘进元). Three techniques on protein extraction from cotton fibers and two-dimensional eletrophoresis. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2006, 22(1): 77–80 (in Chinese with English abstract) [10]Wu Y T, Liu J Y. Molecular cloning and characterization of a cotton glucuronosyltranferase gene. J Plant Physiol, 2005: 573–582 [11]Yang Y W, Bian S M, Yao Y, Liu J Y. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res, 2008, 7: 4623–4637 [12]Delanghe E A L. Lint Development. In: Mauney J R, Stewart J M eds. Cotton Physiology. Memphis, TN, US: Cotton Foundation. 1986. pp 325–349 [13]John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proc Natl Acad Sci USA, 1992, 89: 5769–5773 [14]Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of alpha- and beta-tubulin isotypes during cotton fiber development. Plant Physiol, 1994, 105: 1347–1353 [15]Savithiry N, Xu C P, Thomas J C, Wesley M G. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem, 2005, 342: 214–220 [16]Cristina M V, Katja S. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics, 2006, 6: 4166–4175 [17]Zhang S Q, Liu Y D. Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell, 2001, 13: 1877–1889 [18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254 [19]Wang X C, Li X F, Li Y X. A modified coomassie brilliant blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnol Lett, 2007, 29: 1599–1603 [20]Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7–12 [21]Li C-M(李春梅), Yang S-P(杨守萍), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). Comparative proteomic analysis of wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Prog Biochem Biophys (生物化学与生物物理进展), 2007, 34(12): 1296–1302 (in Chinese with English abstract) [22]Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7–12 [23]Yao Y, Yang Y W, Liu J Y. An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis, 2006, 27: 4559–4569 [24]Herbst A, Hemann M T, Tworkowski K A. A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep, 2005, 6: 177–183 [25]Matsuzawa S I, Reed J C. Siah-1, SIP and Ebi collaborate in a novel pathway for B-Catenin degradation linked to p53 responses. Mol Cell, 2001, 7: 915–926 [26]Yu H-C(于海川), Wu J(吴娇), Cui B-M(崔百明), Sun J-B(孙建波), Peng M(彭明). Cloning and expression analysis of two new genes encoding F-box proteins in cotton (Gossypium hirsutum L.). Cotton Sci (棉花学报), 2008, 20(2): 99–104 (in Chinese with English abstract) [27]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875 [28]Fan X-P(范小平), Fan B-H(范博红), Li X-B(李学宝), Yang W-C(杨维才), Xu Z-Q(徐子勤). Transformation of GhACT1 RNAi and its effect on fiber length of cotton(Gossypium hirsutum L.). Acta Agric Boreali Sin (华北农学报), 2008, 23(5): 73–75 (in Chinese with English abstract) [29]Wang H Y, Yu Y, Chen Z L. Functional characterization of Gosspium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Charaeterization of in vivo functions of a cotton profilin gene. Planta, 2005, 222: 594–603 [30]He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot, 2008, 59: 2687–2695 [31]Seagull, R.W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro fiber development. J Cell Sci, 1992, 101: 561–577 [32]Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: A potential role in the regulation of callose synthase. Plant J 1993, 3: 763–772 [33]Shin H, Brownm R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol, 1999, 3: 925–934 [34]Dhindsa R S, Beasley C A, Ting I P. Osmoregulation in cotton fiber: Accumulation of potassium and malate during growth. Plant Physiol, 1975, 56: 394–398 [35]Basra A S, Malik C P. Dark metabolism of CO2 during fibre elongation of two cottons differing in fibre lengths. J Exp Bot, 1983, 34: 1–9 [36]Wafler U, Meie H. Enzyme activities in developing cotton fibres. Plant Physiol Biochem, 1994, 32: 697–702 [37]She Y-B(佘义斌), Zhu Y-C(朱一超), Zhang T-Z(张天真). Cloning, expression, and mapping of S-adenosyl-L-homocysteine hydrolase (GhSAHH) cDNA in cotton. Acta Agron Sin (作物学报), 2008, 34(6): 958–964 (in Chinese with English abstract) [38]Dirk B, Norbert L, Wolfgang B. Induction of heat shock proteins in response to primary alcohols in Acinetobaeter calcoaceticus. Electrophoresis, 1999, 20: 781–789 |
[1] | 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282. |
[2] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[3] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[4] | 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69. |
[5] | 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908. |
[6] | 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299. |
[7] | DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346. |
[8] | 胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆. 棉花纤维中木质素的相对分子量[J]. 作物学报, 2017, 43(06): 940-944. |
[9] | 于涛,李耕,张成芬,刘鹏,董树亭,张吉旺,赵斌. 玉米籽粒早期发育相关蛋白的差异表达特性[J]. 作物学报, 2017, 43(04): 608-619. |
[10] | 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550. |
[11] | 韩平安,逯晓萍,米福贵,张瑞霞,李美娜,薛春雷,董婧,丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析[J]. 作物学报, 2016, 42(05): 696-705. |
[12] | 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254. |
[13] | 兰海,冷亦峰,周树峰,刘坚,荣廷昭. 玉米种子休眠相关蛋白的鉴定与分析[J]. 作物学报, 2014, 40(10): 1865-1871. |
[14] | 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156. |
[15] | 宋素洁,古佳玉,郭会君,赵林姝,赵世荣,李军辉,赵宝存,刘录祥. 小麦叶绿素缺失突变体Mt6172及其野生型叶片蛋白质组学双向差异凝胶电泳分析[J]. 作物学报, 2012, 38(09): 1592-1606. |
|