欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 67-73.doi: 10.3724/SP.J.1006.2011.00067

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦Pm21基因调控的白粉菌早期侵染抑制和寄主细胞反应

章珍,刘新红,翟洪翠,王华忠*   

  1. 天津师范大学生命科学学院 / 细胞遗传与分子调控天津市重点实验室,天津 300387
  • 收稿日期:2010-04-28 修回日期:2010-07-30 出版日期:2011-01-12 网络出版日期:2010-10-09
  • 通讯作者: 王华忠, E-mail: hsxywhz@mail.tjnu.edu.cn
  • 基金资助:

    本研究由天津市自然科学基金(08JCYBJC05000)和天津市高等学校科技发展基金(20070916)资助。

Primary Infection Suppression of Blumeria graminis f. sp. Tritici and Host Cell Responses Regulated by Pm21 Gene in Wheat

ZHANG Zhen,LIU Xing-Hong,ZHAI Hong-Cui,WANG Hua-Zhong*   

  1. School of Life Sciences / Tianjin Key Laboratory of Cyto-genetical & Molecular Regulation, Tianjin Normal University, Tianjin 300387, China
  • Received:2010-04-28 Revised:2010-07-30 Published:2011-01-12 Published online:2010-10-09
  • Contact: WANG Hua-Zhong,E-mail:hsxywhz@mail.tjnu.edu.cn

摘要: 携带抗白粉病基因Pm21的小麦材料对白粉病免疫,叶片可见坏死斑。苗期人工接种小麦白粉菌(Blumeria graminis f. sp. tritici)和病原侵染初期的细胞学观察表明,在互作位点,携带Pm21基因的抗病材料上表皮细胞乳突形成时间与感病对照差异不明显,但乳突的大小、致密度、持续时间及乳突中H2O2染色较对照有明显差异,并由此显著降低白粉菌的侵入频率。抗病材料上发生多次侵染未成功导致白粉菌附着胞畸形。对于少数成功侵入并形成吸器的白粉菌,抗病材料表皮细胞发生过敏性反应,限制白粉菌吸器和二级菌丝的发展。因此,Pm21调控的白粉病抗病反应在细胞水平上表现为细胞壁加固和过敏性反应的发生。

关键词: 小麦白粉病, Pm21, 细胞壁加固, 过敏性反应

Abstract: Pm21 is a wide-spectrum resistance gene to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) in wheat (Triticum aestivum L.), which originates from Haynaldia villosa. To reveal the mechanism of Pm21-mediated Bgt resistance in wheat at early infection stage, we carried out the cytological observations using wheat line 92R137, carrying Pm21 gene and presenting immunity (but with visible spots on leaves) to Bgt after artificial inoculation with the prevalent Bgt race 15. Chinese Spring (CS) was used as the susceptible control. In wheat–Bgt interaction sites on leaves, papillae formed at a similar time in challenged epidermal cells in both 92R137 and CS. However, the papillae were larger and more compact and persisted in longer time in 92R137 than in CS, resulting in effectively blocking the penetration of Bgt. Accumulation of H2O2 was observed in the papillae of 92R137 by DAB staining. Appressorium malformation occurred in 92R137, which was probably caused by the failure of multiple penetration attempts of Bgt. For the small number of Bgt that successfully penetrated the epidermal cells of 92R137, haustorium-dependent hypersensitive reactions were induced to suppress further development of haustoria and secondary hyphae, arresting onset of powdery mildew. Therefore, the major mechanism of Pm21-mediated Bgt resistance involves challenged host cell wall reinforcement and hypersensitive reaction.

Key words: Wheat powdery mildew, Pm21 gene, Cell wall reinforcement, Hypersensitive reaction

[1]Frye C A, Innes R W. An Arabidopsis mutant with enhanced disease resistance to powdery mildew. Plant Cell, 1998, 10: 947–956
[2]Collinge D B. Cell wall appositions: the first line of defence. J Exp Bot, 2009, 60: 351–352
[3]Aist J R, Israel H W. Auto fluorescent and ultraviolet absorbing components in cell walls and papillae of barley coleoptiles and their relationship to disease resistance. Can J Bot, 1986, 64: 266–272
[4]Carver T L W, Carr A J H. Effects of host resistance on the development of haustoria and colonies of oat mildew. Annu Appl Biol, 1978, 88: 171–178
[5]Brisson L F, Tenhaken R, Lamb C J. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell, 1994, 6: 1703-1712
[6]Dixon R A, Harrison M J, Lamb C J, Dixon R A, Harrison M J, Lamb C J. Early events in the activation of plant defense responses. Annu Rev Phytopathol, 1994, 32: 479–501
[7]Baker C J, Orlandi E W. Active oxygen in plant pathogenesis. Annu Rev Phytopathol, 1995, 33: 299–321
[8]Tzeng D D, DeVay J E. Role of oxygen radicals in plant disease development. Adv Plant Pathol, 1993, 10: 1–34
[9]Levine A, Tenhaken R, Dixon R A, Lamb C J. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79: 583–593
[10]Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol Gen Genet, 1993, 239: 122–128
[11]Li A L, Wang M L, Zhou R H, Kong X Y, Huo N X, Wang W S, Jia J Z. Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat–powdery mildew interactions. Plant Pathol, 2005, 54: 308–316
[12]Freialdenhoven A, Seherag B, Hollricher K, Collinge D B, Thordal-Christensen H, Schulze-Lefert P. Nar-1 and Nar-2, two loci required for Mla-12 specified race resistance to powdery mildew in barley. Plant Cell, l994, 6: 983–994
[13]Koga H, Bushnell W R, Zeyen R J. Specificity of cell type and timing of events associated with papilla formation and the hypersensitive reaction in leaves of Hordeum vulgare attacked by Erysiphe graminis f. sp. hordei. Can J Bot, 1990, 68: 2344–2352
[14]Wen C-J(文成敬), Tao J-F(陶家凤). Relationship of papilla formation and successful infection by powdery mildew fungus on wheat. Acta Phytopathol Sin (植物病理学报), 1989, 19(1): 17–20 (in Chinese with English abstract)
[15]Aist J R, Israel H W. Papilla formation: timing and significance during penetration of barley coleoptiles by Erysiphe graminis hordei. Phytopathology, 1977, 67: 455–461
[16]Wang Z-M(王彰明), Chen H-D(陈厚德), Bi H-S(毕华松), Fang Z(方正)..Studies on haustorium’s development of Blumeria graminis f. sp. tritici and papillae formation of host cell. J Yangzhou Univ (Agric Life Sci Edn) (扬州大学学报·生命科学版), 2003, 24(2): 64–67 (in Chinese with English abstract)
[17]Hu D-W(胡东维), Li Z-Q(李振岐), Kang Z-S(康振生). Cytological studies on hypersensitive responses of wheat against primary infection by Erysiphe graminis f. sp. tritici. J Zhejiang Agric Univ (浙江农业大学学报), 1997, 23(4): 399–404 (in Chinese with English abstract)
[18]Hückelhoven R, Kogel K H. Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei). Mol Plant-Microbe Interact, 1998, 11: 292–300
[19]Qi L-L(齐莉莉), Chen P-D(陈佩度), Liu D-J(刘大钧), Zhou B(周波), Zhang S-Z(张守中), Sheng B-Q(盛宝钦), Xiang Q-J(向齐君), Duan X-Y(段霞瑜), Zhou Y-L(周益林). The gene Pm21: A new source for resistance to wheat powdery mildew. Acta Agron Sin (作物学报), 1995, 21(3): 257–262 (in Chinese with English abstract)
[20]Koga H, Zeyen R J, Bushnell W R, Ahlstrand G G. Hypersensitive cell death, autofluorescence, and insoluble silicon accumulation in barley leaf epidermal cells under attack by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol, 1988, 32: 395–409
[21]Yao J-Q(姚技强), Shang H-S(商鸿生), Li Z-Q(李振岐). On irregular appressoria of Blumeria graminis. Acta Phytopathol Sin (植物生理学报), 1998, 28(3): 215–219 (in Chinese with English abstract)
[22]Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell, 1997, 88: 596–705
[23]Marco T, Kogel K H, Hückelhoven R. Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis. Mol Plant-Microbe Interact, 2004, 17: 304–312
[24]Hückelhoven R, Fodor J, Preis C, Kogel K H. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol, 1999, 119: 1251–1260
[25]Bracket C E. The ultrastructure of the haustorial apparatus of Erysiphe graminis and its relationship to the epidermal cell of barley. Phytopathology, 1968, 58: 12–30
[26]Sun X-L(孙晓丽), Zhou R-H(周荣华), Jia J-Z(贾继增). Programmed cell death induced by powdery mildew in wheat (Triticum aestivum) leaves. J Yangzhou Univ (Agric Life Sci Edn) (扬州大学学报·生命科学版), 2006, 27(2): 22–25 (in Chinese with English abstract)
[27]Lyngkjær M F, Carver T L W. Conditioning of cellular defence responses to powdery mildew in cereal leaves by prior attack. Mol Plant Pathol, 2000, 1: 41–49
[1] 姜延涛,许韬,段霞瑜*,周益林. 品种混种控制小麦白粉病及其对小麦产量和蛋白质含量的影响[J]. 作物学报, 2015, 41(02): 276-285.
[2] 冯伟,王晓宇,宋晓,贺利,王永华,郭天财. 基于冠层反射光谱的小麦白粉病严重度估测[J]. 作物学报, 2013, 39(08): 1469-1477.
[3] 邢莉萍,钱晨,李明浩,曹爱忠,王秀娥,陈佩度. 小麦Mlo反义基因的转化及转基因植株的白粉病抗性分析[J]. 作物学报, 2013, 39(03): 431-439.
[4] 王华忠, 章珍, 贺洋, 岳洁瑜. 病原侵染早期小麦抗白粉病性状的构成因素剖析和QTL定位分析[J]. 作物学报, 2011, 37(07): 1219-1228.
[5] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测[J]. 作物学报, 2011, 37(06): 943-954.
[6] 曹世勤, 骆惠生, 武翠平, 金社林, 王晓鸣, 朱振东, 贾秋珍, 黄瑾, 张勃, 尚勋武. 甘肃省主要小麦生产品种(系)及抗源材料抗白粉病基因推导分析[J]. 作物学报, 2010, 36(12): 2107-2115.
[7] 张蓓,阎爱华,刘刚,刘猛,侯春燕,王冬梅*. 胞内钙库对小麦叶锈菌侵染之过敏反应的影响[J]. 作物学报, 2010, 36(05): 833-839.
[8] 李根桥,房体麟,朱婕,高亮亮,李闪,解超杰,杨作民,孙其信,刘志勇. 普通小麦品种Brock抗白粉病基因分子标记定位[J]. 作物学报, 2009, 35(9): 1613-1619.
[9] 王振英;赵红梅;洪敬欣;陈丽媛;朱婕;李刚;彭永康;解超杰;刘志勇;孙其信;杨作民. 簇毛麦6VS上4个新分子标记的鉴定及与抗白粉病基因Pm21的连锁分析[J]. 作物学报, 2007, 33(04): 605-611.
[10] 高安礼;何华纲;陈全战; 张守忠; 陈佩度. 分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a、Pm21 的聚合体[J]. 作物学报, 2005, 31(11): 1400-1405.
[11] 朱振东;周荣华;贾继增. 小麦品系抗小麦白粉病基因分子标记鉴定[J]. 作物学报, 2005, 31(08): 977-982.
[12] 罗瑛皓;陈新民;夏兰芹;陈孝;何中虎;任正隆. 小麦抗白粉病基因聚合体DH材料的分子标记鉴定[J]. 作物学报, 2005, 31(05): 565-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!