作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2170-2178.doi: 10.3724/SP.J.1006.2010.02170

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 扬州大学江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏扬州 225009
  • 收稿日期:2010-01-25 修回日期:2010-06-29 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 陆卫平, E-mail: wplu@yzu.edu.cn, Tel: 0514-87979377
  • 基金资助:

    本研究由国家自然科学基金项目(30971731,31000684), 江苏省作物栽培生理重点实验室开放课题(02738800372)和扬州大学博士启动金(2009087)资助。

Differences of Physicochemical Properties for Waxy Maize Flour at Fresh and Maturity Stages

LU Da-Lei,GUO Huan-Fen,DONG Ce,LU Wei-Ping*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
  • Received:2010-01-25 Revised:2010-06-29 Published:2010-12-12 Published online:2010-10-09
  • Contact: LU Wei-Ping,E-mail:wplu@yzu.edu.cn,Tel:0514-87979377

摘要: 以5个糯玉米品种为材料,研究其鲜食期和成熟期籽粒的理化特性。结果表明,糯玉米粉的最大吸收波长鲜食期和成熟期无显著差异,均表现出典型的糯性特征,禾盛糯1512成熟期的蓝值高于鲜食期,其余品种鲜食期和成熟期无显著差异。成熟期糯玉米粉具有较高的淀粉含量和较低的蛋白质含量。成熟期糯玉米粉的结晶度和膨胀势高于鲜食期,而溶解度和透光率低于鲜食期,但不同品种对收获期的响应不一致。中糯319鲜食期的黏度特性较优,其他4个品种成熟期较优,鲜食期收获的粤彩糯1号不能糊化。差示扫描量热仪结果表明,成熟期收获的糯玉米粉具有较低的转变温度(起始温度、峰值温度、终值温度)、热焓值、峰值指数以及较宽的糊化范围,鲜食期收获的糯玉米粉具有较低的回生值。相关分析表明,最大吸收波长与峰值黏度显著正相关(相关系数为0.63,P<0.05),与糊化温度显著负相关(相关系数为-0.86,P<0.01)。结晶度与糊化温度显著负相关(相关系数为-0.70,P<0.05),与热焓值、峰值指数及回生后的热焓值显著正相关(相关系数分别为0.74,P<0.01;0.62,P<0.05;0.74,P<0.01)。回生值与蓝值、最大吸收波长、结晶度及回生后的热焓值显著正相关(相关系数分别为0.64,P<0.05;0.61,P<0.05;0.69,P<0.05;0.96,P<0.01)。中糯319鲜食期收获具有较高的淀粉含量、结晶度和黏度特征值,适宜作鲜食;粤彩糯1号两个时期的回生值远低于其他品种,适宜制作低回生的食品。

关键词: 糯玉米粉, 收获期, 理化特性

Abstract: Understanding the differences of physicochemical properties of flours from different waxy maize cultivars at fresh and maturity stages could make its utilization proper. In the study, the flour physicochemical properties of five waxy maize cultivars at fresh and maturity stages were measured. The results indicated that the λmax was similar at two stages and presented typical waxy character. Heshengnuo 1512 harvested at maturity presented higher blue value (BV), whereas the other four cultivars had similar BV at two harvest stages. The flour presented higher starch content and lower protein content when the maize was harvested at maturity. The crystallinity and swell power at maturity were higher than those at fresh, whereas the solubility and light transmittance were lower at maturity, and the responses of the physicochemical characteristics to harvest stage were different for different cultivars. Zhongnuo 319 harvested at fresh presented higher viscosity characteristics and lower pasting temperature, whereas the viscosity properties for the other four cultivars were better at maturity, and Yuecainuo1 could not paste at fresh. Differential scanning calorimetry (DSC) results demonstrated that flour at maturity had lower transition temperature (onset, peak, and conclusion temperature), enthalpy of gelatinization (DHgel), peak height index (PHI) and wider gelatinization range (R), whereas the percentage of retrogradation (%R) was lower at fresh. Λmax was positively correlated to peak viscosity (r=0.63, P<0.05), and negatively correlated to pasting temperature (r= -0.86, P<0.01). Crystallinity was negatively correlated to pasting temperature (r = -0.70, P<0.05), and positively correlated to DHgel (r=0.74, P<0.01), PHI (r=0.62, P<0.05) and enthalpy of retrogradation (DHret) (r=0.74, P<0.01). %R was positively correlated to BV (r=0.64, P<0.05), λmax (r=0.61, P<0.05), crystallinity (r=0.69, P<0.05), and DHret (r=0.96, P<0.01). Among the five cultivars, Zhongnuo 319 harvested at fresh presented higher starch content, crystallinity, and viscosity characteristics, which makes it better in fresh eating quality. Yuecainuo 1 at both harvest stages had the lowest %R among the cultivars, indicating its advantage using for the food that needs lower retrogradation.

Key words: Waxy maize flour, Harvest date, Physicochemical properties

[1]Champagne E T, Bett-Garver K L, Thompson J, Mutters R, Grimm C C, McClung A M. Effects of drain and harvest dates on rice sensory and physicochemical properties. Cereal Chem, 2005, 82: 369–374
[2]Qian C-R(钱春荣), Yang J(杨静), Liu H-Y(刘海英), Jin Z-X(金正勋), Jin X-Y(金学泳). Analysis on the variation of rice grain taste meter value and RVA profile during grain filling and ripening stage. J Northeast Agric Univ (东北农业大学学报), 2006, 37(4): 433–436 (in Chinese with English abstract)
[3]Noda T, Tajahata Y, Sato T, Hisamatsu M, Yamada T. Physicochemical properties of starches extracted from sweet potato roots differing in physiological age. J Agric Food Chem, 1995, 43: 3016–3020
[4]Liu Q, Weber E, Currie V, Yada R. Physicochemical properties of starches during potato growth. Carbohyd Polym, 2003, 51: 213–221
[5]Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Saito K, Mangalika W H A, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem, 2004, 86: 119–125
[6]Lu D-L(陆大雷), Wang D-C(王德成), Zhao J-R(赵久然), Wang F-G(王凤格), Lu W-P(陆卫平). Yield and starch pasting characteristics (RVA) of autumn-sown waxy maize under different harvesting dates. Sci Agric Sin (中国农业科学), 2008, 41(12): 4048–4054 (in Chinese with English abstract)
[7]Liang Z-J(梁志杰), Lu W-P(陆卫平). Special Maize (特用玉米). Beijing: China Agriculture Press, 1997. pp 122–140 (in Chinese)
[8]Lu D-L(陆大雷), Wang D-C(王德成), Zhao J-R(赵久然), Lu W-P(陆卫平). Crystalline structure and pasting properties of starch in eight waxy corn cultivars grown in spring and autumn. Acta Agron Sin (作物学报), 2009, 35(3): 499–505 (in Chinese with English abstract)
[9]Lu D-L(陆大雷), Wang D-C(王德成), Jing L-Q(景立权), Han Q(韩晴), Guo H-F(郭换粉), Zhao J-R(赵久然), Lu W-P(陆卫平). Starch gelatinization and retrogradation properties under different basic fertilizer regimes and nitrogen topdressing at jointing stage of waxy maize. Acta Agron Sin (作物学报), 2009, 35(5): 867–874 (in Chinese with English abstract)
[10]Chang Y, Lin J, Chang S. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloid, 2006, 20: 332–339
[11]Fu B X, Kovacs M I P K, Wang C. A simple wheat flour test. Cereal Chem, 1998, 75: 566–567
[12]12 Singh N, Inouchi N, Nishinari K. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloid, 2006, 20: 923–935
[13]Wu J-Y(吴建宇), Xu C-L(徐翠莲), Ren H-P(任和平), Su Z-L(苏祯禄), Tai G-Q(台国琴). Study on the quality in different harvesting dates of corn. Act Agric Univ Henanensis (河南农业大学学报), 1994, 28(3): 92–94 (in Chinese with English abstract)
[14]Philippeau C, Doreau-Michalet B. Influence of genotype and stage of maturity of maize on rate of ruminal starch degradation. Anim Feed Sci Tech, 1997, 68: 25–35
[15]Liu P(刘萍), Wang C-L(王从亮), Wang F-G(王凤格), Lu W-P(陆卫平), Guo J-L(郭景伦), Wang J-F(王继丰), Liu X-B(刘小兵). Changes of quality components in waxy Corn kernels after pollination. Sci Agric Sin (中国农业科学), 2007, 40(8):1817–1821 (in Chinese with English abstract)
[16]Fiedorowicz M, Rebilas K. Physicochemical properties of waxy corn starch and corn amylopectin illuminated with linearly polarized visible light. Carbohyd Polym, 2002, 50: 315–319
[17]Yalcin E, Celik S. Solubility properties of barley flour, protein isolates and hydrolysates. Food Chem, 2007, 104: 1641–1647
[18]Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem, 2003, 81: 219–231
[19]Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohyd Polym, 2002, 49: 217–224
[20]Huang H-H(黄华宏), Lu G-Q(陆国权), Zheng Y-F(郑遗凡). Variation in root starch gelatinization characteristics during the growth and development of sweet potato. Sci Agric Sin (中国农业科学), 2005, 38(3): 462–467 (in Chinese with English abstract)
[21]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J. Structure and function of starch from advanced generations of new corn lines. Carbohyd Polym, 2003, 5: 305–319
[22]Sandhu K S, Singh N, Malhi N S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chem, 2007, 101: 938–946
[23]Ning T-Y(宁堂原), Li Z-J(李增嘉), Jiao N-Y(焦念元), Zhao C(赵春), Shen J-X(申加祥), Zhang G-H(张光辉), Wang H(王浩). Effects on paste properties and starch contents of different maturity maize cultivars relay-planting. Acta Agron Sin (作物学报), 2005, 31(1): 77–82 (in Chinese with English abstract)
[24]Sandhu K S, Singh N. Some properties of corn starches: II. Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem, 2007, 101: 1499–1507
[25]Toyama J, Ishiguro K, Noda T, Kumagai T, Yamakawa O. Influence of delayed harvest time on physicochemical properties of sweet potato starch. Starch, 2003, 55: 558–563
[26]Barichello V, Yada R Y, Coffin R H, Stanley D W. Low temperature sweetening in susceptible and resistant potatoes: Starch structure and composition. J Food Sci, 1990, 54: 1054–1059
[1] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[2] 张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18.
[3] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[4] 李春燕,张雯霞,张玉雪,姚梦浩,丁锦峰,朱新开,郭文善,封超年. 小麦籽粒淀粉与面粉的理化特性差异[J]. 作物学报, 2018, 44(7): 1077-1085.
[5] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[6] 刘希伟,张敏,李勇,张玉春,宋霄君,赵城,蔡瑞国. 花后不同强度遮光对糯小麦和非糯小麦淀粉组分和理化特性的影响[J]. 作物学报, 2017, 43(05): 777-786.
[7] 张倩,张明才,张海燕,谭伟明,李召虎,段留生. 30%矮•烯微乳剂对水稻茎秆理化特性的调控[J]. 作物学报, 2013, 39(06): 1089-1095.
[8] 杨世民;谢力;郑顺林;李静;袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J]. 作物学报, 2009, 35(1): 93-103.
[9] 李春燕;封超年;王亚雷;张容;郭文善;朱新开;彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系[J]. 作物学报, 2007, 33(08): 1240-1245.
[10] 李春燕;封超年;王亚雷;张容;郭文善;朱新开;彭永欣. 不同小麦品种籽粒淀粉理化特性的差异及其相关[J]. 作物学报, 2007, 33(07): 1129-1134.
[11] 宋建民;刘爱峰;刘建军;李豪圣;吴祥云;赵振东;刘广田. 环境与品种对小麦淀粉理化特性和面条品质的影响[J]. 作物学报, 2005, 31(06): 796-799.
Full text



No Suggested Reading articles found!