欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2162-2169.doi: 10.3724/SP.J.1006.2010.02162

• 耕作栽培·生理生化 • 上一篇    下一篇

种植密度对棉籽生物量和脂肪与蛋白质含量的影响

朱丽丽,周治国,赵文青,孟亚利*,陈兵林,吕丰娟   

  1. 南京农业大学 / 农业部作物生长调控重点开放实验室,江苏南京 210095
  • 收稿日期:2010-03-10 修回日期:2010-07-04 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 孟亚利, E-mail: giscott@njau.edu.cn, Tel: 025-84396813
  • 基金资助:

    本研究由国家自然科学基金项目(30771277, 31071363)资助。

Effects of Plant Densities on Cottonseed Biomass, Fat and Protein Contents

ZHU Li-Li,ZHOU Zhi-Guo,ZHAO Wen-Qing,MENG Ya-Li*,CHEN Bing-Lin,LÜ Feng-Juan   

  1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-03-10 Revised:2010-07-04 Published:2010-12-12 Published online:2010-10-09
  • Contact: MENG Ya-Li, E-mail: giscott@njau.edu.cn, Tel: 025-84396813

摘要: 以科棉1号和美棉33B为材料,2008年在江苏南京(118º50′E,32º02′N,长江流域下游棉区)和河南安阳(114°13′E,36°04′N,黄河流域黄淮棉区)设置密度试验,研究种植密度对棉籽生物量和脂肪与蛋白质含量的影响。结果表明,不同种植密度条件下,棉籽生物量和脂肪含量的变化过程均符合Logistic生长曲线。随种植密度的增大,籽指和脂肪含量降低,且存在显著的线性负相关关系。而各密度处理棉籽蛋白质含量的变化过程均近似于V字型,随种植密度的增大,棉籽蛋白质含量呈开口向下的抛物线变化趋势,南京、安阳试点分别以每公顷3.3万株和5.1万株密度处理的棉籽蛋白质含量最高。品种、生态点和开花期对棉籽生物量和脂肪与蛋白质含量的形成动态及其对种植密度的响应趋势没有明显影响。不同种植密度对棉籽生物量和脂肪与蛋白质含量的影响与群体冠层光照条件变化密切相关。稀植强光有利于提高棉籽生物量和脂肪含量,而过高和过低密度均不利于棉籽蛋白质的合成与累积。

关键词: 棉花, 种植密度, 籽指, 棉籽脂肪, 棉籽蛋白质

Abstract: Two cotton cultivars (Kemian 1 and NuCOTN) were used in the field experiments in Nanjing (118º50′E, 32º02′N, Middle Lower Reaches of Yangtze River Valley) and Anyang (114°13′E, 36°04′N, Yellow River Valley). The results showed that under the different plant densities, the cumulative process of cottonseed biomass and fat content met Logistic growth curve. As the plant densities increased, cottonseed biomass and fat content decreased and were strongly negatively correlated with plant densities at both experimental sites and flowering dates. However, the curve of cumulative process of cottonseed protein content was similar to “V” for each treatment. A highly significant quadratic relationship was existed between cottonseed protein content and plant densities for varieties, sites, and flowering dates. The highest cottonseed protein content was obtained under 3.3×105 plants ha–1 in Nanjing and 5.1×105 plants ha–1 in Anyang, respectively. Variety, site, and flowering date had no significant effects on the dynamic changes of cottonseed biomass, fat and protein contents. The impacts of plant densities on cottonseed quality were closely related to canopy light conditions. Low plant densities helped the improvement of cottonseed biomass and fat content, while the too high or too low plant densities were not conducive to cottonseed protein synthesis and accumulation.

Key words: Cotton (Gossypium hirsutum L.), Plant densities, Cottonseed index, Cottonseed fat, Cottonseed protein

[1]Ahmad S, Anwar F, Hussain A I, Ashraf M, Awan A R. Dose soil salinity affect yield and composition of cottonseed oil? J Am Oil Chem Soc, 2007, 84: 845–851
[2]Gotmare V, Singh P, Mayee C D, Deshpande V, Bhagat C. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton. Plant Breed, 2004, 123: 207–208
[3]Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes. Acta Agric Scand: Sect B-Soil Plant Sci, 2005, 55: 76–80
[4]Li W-F(李文峰), Meng Y-L(孟亚利), Xu N-Y(许乃银), Chen B-L(陈兵林), Zhou Z-G(周治国). Simulation model of cottonseed protein and oil formation. Acta Agron Sin (作物学报), 2009, 35(7): 1290–1298 (in Chinese with English abstract)
[5]Li W-F(李文峰), Meng Y-L(孟亚利), Chen B-L(陈兵林), Wang Y-H(王友华), Zhou Z-G(周治国). Effects of climatic factors on fat and total protein contents in cottonseeds. Acta Ecol Sin (生态学报), 2009, 29(4): 1832–1839 (in Chinese with English abstract)
[6]Zhou Z-G(周治国), Meng Y-L(孟亚利), Shi P(施培). Effect of seedling stage shading on cotton yield and its quality formation. Chin J Appl Ecol(应用生态学报), 2002, 13(8): 997–1000 (in Chinese with English abstract)
[7]Egelkraut T M, Kissel D E, Cabrera M L, Gascho G J, Adkins W. Nitrogen concentration in cottonseed as an indicator of N availability. Nutr Cycl Agroecosyst, 2004, 68: 235–242
[8]Sawan Z M, Saeb A, Hafez A E B, Alkassas A R. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant. World J Agric Sci, 2006, 2: 56–65
[9]Sawan Z M, hafez S A, Basyony A E, alkassas A R. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed. Grasas Aceites, 2007, 58: 243–251
[10]Malavolta E, Nogueira N G L, Heinrichs R, Higashi E N, Rodríguez V, Guerra E, de Oliveira S C, Cabral C P. Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun Soil Sci Plant Anal, 2004, 35: 1007–1019
[11]Reddy K R, Davidonis G H, Johnson A S, Vinyard B T. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J, 1999, 91: 851–858
[12]Wang C-Y(王春艳), Isoda A(礒田昭弘), Wang D-L(王道龙), Li M-S(李茂松), Ruan M-Y(阮明艳), Su Y(苏跃). Canopy structure and radiation interception of cotton grown under high density condition in northern Xinjiang. Cotton Sci (棉花学报), 2006, 18(4): 223–227 (in Chinese with English abstract)
[13]Zhao Z-H(赵中华), Liu D-Z(刘德章), Guo M-L(郭美丽). The relationship of cotton canopy structure, photosynthetic characters, dry matter accumulation and distribution and yield. Acta Gossypii Sin (棉花学报), 1997, 9(2): 90–94 (in Chinese with English abstract)
[14]De Castro M D L, Garcia-ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta, 1998, 369: 1–10
[15]Feil B, Moser S B, Jampatong S, Stamp P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45: 516–523
[16]Gao R-Q(高荣岐), Zhang C-Q(张春庆). Seed Biology (种子生物学). Beijing: China Science and Technology Press, 2002. pp 118–123 (in Chinese)
[17]Liu K-C(刘开昌), Zhang X-Q(张秀清), Wang Q-C(王庆成), Wang C-Y(王春英), Li A-Q(李爱芹). Effect of plant density on microclimate in canopy of maize. Acta Phytoecol Sin (植物生态学报), 2000, 24(4): 489–493 (in Chinese with English abstract)
[18]Cao Y-Z(曹仪植), Song Z-W(宋占午). Plant Physiology (植物生理学). Lanzhou: Lanzhou University Press, 1998 (in Chinese)
[19]Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages: nonstructural carbohydrate composition. Crop Sci, 1998, 38: 1196–1203
[20]Zhou K-J(周可金), Pei X-W(裴训武), Jiang H-W(江厚旺). Studies on the dynamics of dry matter accumulation of cotton boll at different flower stages. Acta Gossypii Sin (棉花学报), 1996, 8(3): 145–150 (in Chinese with English abstract)
[21]Zhang J-W(张吉旺). Effects of Light and Temperature Stress on Physiological Characteristics of Yield and Quality in Maize. PhD Dissertation Shandong Agricultural University, 2005 (in Chinese with English abstract)
[22]Zhang J-X(章建新), Zhai Y-L(翟云龙), Xue L-H(薛丽华). Effect of plant density on growth tendency, dry matter accumulation and distribution in high yield spring soybean. Soybean Sci (大豆科学), 2006, 25(1): 145–150 (in Chinese with English abstract)
[23]Hu G-H(胡国华), Ning H-L(宁海龙), Wang H-D(王寒冬), Wang J-A(王继安), Zhang D-Y(张大勇), Li W-B(李文滨). Effect of photo-intensity on quality and yield of soybeans: I. Effect of light-intensity on oil content and protein content of soybeans in the whole growth period. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(2): 86–88 (in Chinese with English abstract)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[10] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[11] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!