欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2154-2161.doi: 10.3724/SP.J.1006.2010.02154

• 耕作栽培·生理生化 • 上一篇    下一篇

Cd2+对番茄幼苗生长和蛋白质组的影响

陈丽,王炼,王振英*,彭永康*   

  1. 天津师范大学生命科学学院 / 细胞遗传与分子调控天津市重点实验室,天津 300387
  • 收稿日期:2010-03-23 修回日期:2010-07-04 出版日期:2010-12-12 网络出版日期:2010-08-31
  • 通讯作者: 王振英,E-mail:wzycell@yahoo.com.cn; 彭永康,E-mail:pykcell@yahoo.com.cn
  • 基金资助:

    本研究由天津市科委重点项目(08JCZDJC16500)资助。

Effect of Cd2+ on Seedling Growth and Proteome in Tomato

CHEN Li,WANG Lian,WANG Zhen-Ying*,PENG Yong-Kang*   

  1. College of Life Sciences / Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation, Tianjin Normal University, Tianjin 300387, China
  • Received:2010-03-23 Revised:2010-07-04 Published:2010-12-12 Published online:2010-08-31
  • Contact: WANG Zhen-Ying,E-mail:wzycell@yahoo.com.cn;PENG Yong-Kang,E-mail:pykcell@yahoo.com.cn

摘要: 以3 d龄番茄幼苗为试验材料, 从生理、生化和蛋白质组角度, 分析0.01~1.00 mmol L–1 Cd2+处理72 h后对幼苗的影响。结果表明, Cd2+处理导致幼苗生长严重受抑, 幼苗高度从对照组的4.76±0.50 cm分别降至3.79±0.05 cm (0.01 mmol L–1 Cd2+处理, P<0.01)和1.77±0.15 cm (0.03 mmol L–1 Cd2+处理, P<0.01)。根长度从对照组的6.07±0.04 cm降至4.77±0.58 cm (0.01 mmol L–1 Cd2+处理, P< 0.01)和3.65±0.66 cm (0.03 mmol L–1 Cd2+处理, P<0.01)。叶绿素含量在0.1 mmol L–1 Cd2+处理后开始下降。当幼苗用0.05 mmol L–1 Cd2+处理时, 根系中有10个蛋白质斑点, 叶片中有21个蛋白质斑点产生变化。利用MS/MS技术, 根系中有4个蛋白质斑点得以鉴别, 它们是ribosomal protein L 20 (斑点1)、F-box /LRR repeat protein (斑点2)、ribosomal protein small submit 4 (斑点4)和CBL-interacting protein kinase (斑点5)。在叶片中, 有2个蛋白质斑点消失, 4个蛋白质斑点合成, 它们是ABC transporter (斑点16)、maturase-like protein (斑点17)、chalcone synthase (斑点1)、a hypothetical protein (斑点3)、an unknown protein (斑点4)和a predicated protein (斑点6)。这些被鉴别的Cd2+反应蛋白参与生物合成、mRNA转录调控和蛋白质转运。

关键词: Cd2+胁迫, 蛋白质组, 部分氨基酸序列, MALDI-TOF-MS, 番茄

Abstract: Cadmium is one of the most serious heavy metal pollutions in agricultural soils in China. Three-day-old tomato seedlings were treated with 0.01–1.00 mmol L–1 Cd2+ for 72 h. The results showed that seedling growth was obviously inhibited and seedling height was decreased from 4.76±0.5 cm (in control) to 3.79±0.05 cm (in 0.01 mmol L–1 Cd2+ treatment, P<0.01) and 1.77±0.15 cm (in 0.03 mmol L–1 Cd2+ treatment, P<0.01). In addition, root length was also decreased from 6.07±0.04 cm (in control) to 4.77±0.58 cm (in 0.01 mmol L–1 Cd2+ treatment, P<0.01) and 3.65±0.66 cm (in 0.03 mmol L–1Cd2+ treatment, P<0.01). The chlorophyll contents decreased in the treatment with 0.1 mmol L–1 Cd2+. Ten protein spots in roots and twenty one protein spots in leaves were altered when the seedlings were treated with 0.05 mmol L–1 Cd2+. Total ten protein spots in roots were identified by MS/MS. Four new proteins were induced in roots, including spot 1: ribosomal protein L 20, spot 2: F-box /LRR repeat protein, spot 4: ribosomal protein small submit 4 and spot 5: CBL-interacting protein kinase. In the leaves, two protein spots disappeared and four new protein spots were induced, including spot 16, ABC transporter; spot 17, maturase-like protein; spot 1, chalcone synthase; spot 3, a hypothetical protein; spot 4, an unknown protein and spot 6, a predicated protein. These Cd2+ responsive proteins identified could be involved in protein biosynthesis, mRNA transcription regulation and protein transport. The above results showed that tomato is one of the highly sensitive crops to Cd2+ and could be used as a model to study the adaptation and tolerance mechanisms to heavy metals at physiological and biochemical levels.

Key words: Cd2+-stress, Proteome, Partial amino acid sequence, MALDI-TOF-MS, Tomato (Lycopersicon esculentum L.)

[1]Sophie A, Bertram M B, Jeanne S, Rebecca E C, Joseph M J, Leslie M H. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics, 2009, 9: 2419-2431
[2]Li K-G(李坤权), Liu J-G(刘建国), Lu X-L(陆小龙), Yang J-C(杨建昌), Zhang Z-J(张祖建), Zhu Q-S(朱庆森). Uptake and distribution of cadmium in differences rice cultivars. J Agro-Environ Sci (农业环境科学学报), 2003, 22: 529-532 (in Chinese with English abstract)
[3]Krupa Z. Cadmium-induced changes in the composition and structure of the light-harvesting complex II in radish cotyledons. Physiol Plant, 1988, 73: 518-524
[4]Siedlecka A, Baszynsky T. Inhibition of electron flow around photosystem I in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron deficiency. Physiol Plant, 1993, 87: 99-202
[5]Larsson E H, Bornman J F, Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot, 1998, 49: 1031-1039
[6]Stohs S J, Bagchi D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ. Pathol Toxicol Oncol, 2000, 19: 201-213
[7]Gasic K, Korban S S. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced as and Cd tolerance. Plant Mol Biol, 2007, 64: 361-369
[8]Hart J J, Welch R M, Norvell V A, Sullivan L A, Kochian L. Characterization of cadmium binding, uptake and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol, 1998, 116: 1413-1420
[9]Kavita S, Dubey R S. A 18 kD cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings. J Plant Physiol, 1998, 152: 448-454
[10]Rivera B F, Calantzis C, Turnau K, Canssanel J, Belimov A, Gianinazzi S, Strasser R J, Gianinazzi P V. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot, 2002, 53: 1177-1185
[11]Zhou H-W(周红卫), Shi G-X(施国新). Effect of Cd2+ polluted water on the activities of antioxidant enzymes and ultrastructure in roots of Alternanthera philoxeroides. Plant Physiol Commun (植物生理学通讯), 2003, 39: 211-213 (in Chinese with English abstract)
[12]Fleming W J, Grossfeld R M, Siesko M M. Stress protein synthesis and peroxidase activity in a submersed apiuatic macrophyte exposed to cadmium. Environ Toxicol Chem, 1997, 16: 1755-1760
[13]Keltjens W G, Van Beusichem. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil, 1998, 203: 119-126
[14]Kevresan S, Petrovic N, Popvic M, Kandrac J. Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead and molybdenum. J Plant Nutr, 2001, 24: 1633-1645
[15]Khudsar T, Mahmooduzzafar Ipiba M. Cadmium-Induced changes in leaf epidermis, photosynthetic rate and pigment concentrations in Cajanus cajan. Biol Plant, 2001, 44: 59-64
[16]Lagriffoul A, Mocpiuot B, Mench M, Vangronsveld J. Cadmium toxicity effects on growth, mineral and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil, 1998, 200: 241-250
[17]Mühiling K H, Lauchli A. Effects of biocaccumulation of cadmium in biomass productivity, essential trace element, chlorophyll biosynthesis and macromolecules of wheat seedlings. Biol Trace Element Res, 2003, 92: 257-274
[18]Romero-Puertas M C, Palma J A, Gomeg M, Del Rio L A, Sandalio L M. Cadmium causes the oxidative modification of protein in pea plants. Plant Cell Environ, 2002, 25: 677-687
[19]Ueki S, Citovsky V. The systemic movement of a tobamovirus is inhibited by a cadmium-induced glycine-rich protein. Nat Cell Biol, 2002, 4: 78-87
[20]Weber M, Trampczynska A, Clemems S. Comparative transcriptome analysis of toxic metal responses in Arabodopsis thaliana of the Cd2+ -hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ, 2006, 29: 950-963
[21]Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y. Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot, 2008, 59: 3465-3474
[22]Abercrombie J M, Halfhill M D, Ranjan P, Rao M R. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol, 2008, 8: 87
[23]Norton G J, Lou-Hing D E, Meharg A A, Price A H. Rice-arsenate interactions in hydroponics: whole genome translational analysis. J Exp Bot, 2008, 59: 2267-2276
[24]Van de Mortel J E, Schat H, Moerland P D, Ver Loren van Themaat E. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 2008, 31: 301-324
[25]Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol, 1999, 19:1720-1730
[26]Rose J C, Bashir S, Giovannoni J J, Jahn M M, Saravanan R S. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J, 2004, 39: 715-733
[27]Nagib A, Jenny R, Setuko K. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 2009, 9: 2602-2621
[28]Porra R J, Thompson W A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta, 1989, 975: 384-394
[29]Yan S P, Tang Z C, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244
[30]Bradford M. A rapid and sensitive method for the guantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
[31]Castro A J, Carapito C, Zorn N, Magne C, Leize E, Dorsselaer A V, Clement C. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stree. J Exp Bot, 2005, 56: 2783-2795
[32]Laemmli U K. Cleavage of structure proteins during the assembly of the head of bacteriophase T4. Nature (Lond), 1970, 227: 680-685
[33]Wary W, Boulikas T, Wary V P, Hancock R. Sliver staining of proteins in polyacrylamide gels. Annl Biochem, 1981, 118: 197-203
[34]Guillier M, Allemand F, Graffe M, Sophiera-Ibaud, Dardel F, Springer M, Ghiaruttin C. The N-terminal extension of Escherichia coli ribosomal protein L20 is important for ribosome assembly, but dispensable for translational feedback control. RNA, 2005, 11: 728-738
[35]Bellur D L, Woodson S A. A minimized rRNA-binding site for ribosomal protein S4 and its implications for 30S assembly. Nucl Acids Res, 2009, 37: 1886-1896
[36]Hsiung Y G, Chang H C, Pellequer J L, La Valle R, Lanker S, Wittenberg C. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its Leucine-Rich repeat. Mol Cell Biol, 2001, 21: 2506-2520
[37]Kim H S, Delaney T P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell, 2002, 14: 1469-1482
[38]Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J, 2002, 32: 457-466
[39]Lee S C, Lan W Z, kim B G, Li L, Cheong Y H, Pardey G K, Lu G H, Buchanan B B, Luan S. A protein phosphorylation/ dephosphorylation network regulates a plant potassium channel. PNAS, 2007, 104: 15959-15964
[40]Igarashi Y, Aoki K, Mamitsuka H, Kumar K, Kanehisa M. The evolutionary repertoires of the Eukary-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. Mol Biol Evol, 2004, 21: 2149-2160
[41]Yang S J, Terachi T, Yamagishi H. Inhibition of Chalocone synthase expression in anthers of Raphanus sativus with ogura male sterile cytoplasm. Annl Bot, 2008, 102: 483-489
[42]Li X-M(李雪梅), Zhang W-J(张维佳), Wang Y(王艳), Wang Z-Y(王振英), Peng Y-K(彭永康). Changes in chloroplast proteome of Chinses cabbage seedlings induced by PSⅡ inhabiting herbicide Atrazine. Acta Agron Sin (作物学报), 2008, 34: 238-242 (in Chinese with English abstract)
[43]Aina R, Labra M, Fumagalli P, Vannini C. Thiolpeptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007, 59: 381-392
[44]Sarry J E, Kuhn L, Ducruix C, Lafaye A. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006, 6: 2180-2198
[45]Sobkowiak R, Deckert J. Proteins induced by cadmium in soybean cells. J Plant Physiol, 2006, 163: 1203-1206
[46]Kieffer P, Dommes J, Hoffmann L, Hausman J F. Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics, 2008, 8: 2514-2530
[47]Achref A, Ghislaine R, Armelle G, Franck R, Benoît V, Vivienne G P, Samira S, Eliame D G. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: A root proteomics study. Proteomics, 2009, 9: 420-433
[1] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[2] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[3] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[4] 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69.
[5] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[6] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[7] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[8] 于涛,李耕,张成芬,刘鹏,董树亭,张吉旺,赵斌. 玉米籽粒早期发育相关蛋白的差异表达特性[J]. 作物学报, 2017, 43(04): 608-619.
[9] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[10] 韩平安,逯晓萍,米福贵,张瑞霞,李美娜,薛春雷,董婧,丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析[J]. 作物学报, 2016, 42(05): 696-705.
[11] 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254.
[12] 兰海,冷亦峰,周树峰,刘坚,荣廷昭. 玉米种子休眠相关蛋白的鉴定与分析[J]. 作物学报, 2014, 40(10): 1865-1871.
[13] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[14] 李枝梅,窦海鸥,卫丹丹,孟庆伟,CHEN Tony Huihuang,杨兴洪. codA基因提高番茄植株的耐热性[J]. 作物学报, 2013, 39(11): 2046-2054.
[15] 宋素洁,古佳玉,郭会君,赵林姝,赵世荣,李军辉,赵宝存,刘录祥. 小麦叶绿素缺失突变体Mt6172及其野生型叶片蛋白质组学双向差异凝胶电泳分析[J]. 作物学报, 2012, 38(09): 1592-1606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!