欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2143-2153.doi: 10.3724/SP.J.1006.2010.02143

• 耕作栽培·生理生化 • 上一篇    下一篇

播期和密度对玉米干物质积累动态的影响及其模型的建立

李向岭1,2,赵明2,*,李从锋2,葛均筑2,侯海鹏2,李琦1,侯立白1   

  1. 1 沈阳农业大学农学院, 辽宁沈阳110866;2中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室, 北京100081
  • 收稿日期:2010-05-10 修回日期:2010-08-01 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118605)和国家粮食丰产科技工程项目(2006BAD02A13)资助。

Effect of Sowing-Date and Planting Density on Dry Matter Accumulation Dynamic and Establishment of Its Simulated Model in Maize

LI Xiang-Ling1,2,ZHAO Ming2,*,LI Cong-Feng2,GE Jun-Zhu2,HOU Hai-Peng2,LI Qi1,HOU Li-Bai1   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Eco-physiology and Cultivation, Ministry of Agriculture, Beijing 100081, China
  • Received:2010-05-10 Revised:2010-08-01 Published:2010-12-12 Published online:2010-10-09
  • Contact: ZHAO Ming,E-mail:zhaomingcau@163.net,Tel: 010-82108752

摘要: 在大田条件下, 以益农103、先玉335和登海661为材料, 设置3个播种期(5月3日,5月28日,6月22日)和4个密度处理(4.5万株 hm-2,6.0万株 hm-2,7.5万株 hm-2,9.0万株 hm-2), 测定其干物质积累动态和产量, 分析播期、密度和玉米群体干物质积累动态特征的关系及其积温模型。结果表明: (1)将3个播期玉米不同处理的最大群体干物质积累和出苗至成熟的积温分别定为1, 建立了相对群体干物质积累和相对积温的Richards模拟模型, 方程式为y = 1.1044/(1+e2.0253-5.1927x)1/0.4448, r=0.9950**。(2)方程参数a值(终极生长量参数)基本为1;b值(初值生长量参数)和c值(生长速率参数)在播期、品种间变异较大, 密度间变异较小;d值(形状参数)在播期、品种和密度间变异较小, 可见播期主要通过调节参数bc值来实现对整个方程的调控。应用2008年本试验和另一试验的数据对模型进行验证,模拟准确度(以k表示)均在1.0486**以上;精确度(以R2表示)均在0.9534**以上。(3)拔节期至蜡熟期是玉米群体干物质积累变化速率对密度的敏感反应期;晚播玉米所需积温在群体干物质积累变化速率的缓慢增加和下降阶段逐渐减少,在快速增加阶段逐渐增加。全生育期的群体干物质积累平均速率表现为先玉335>登海661>益农103;且早播>中播>晚播;密度越高群体干物质积累平均速率越大, 达到显著水平。

关键词: 播期, 玉米, 干物质积累, 平均速率, 模型

Abstract: The research and application of crop growth model is a foundation of agricultural production information and digital technology, the quantitative research of leaf area index (LAI) model in different sowing dates can provide a theoretical basis for the highing-yield in maize,and further study the relationship of dry matter accumulation with sowing date and densities.Three maize cultivars(Yinong 103, Xianyu 335, and Denghai 661) with four density treatments in 45 000 plants ha-1, 60 000 plants ha-1, 75 000 plants ha-1and 90 000 plants ha-1 in three sowing date(May 3rd, May 28th, and June 22nd) were used in field experiments, dynamic dry matter accumulation and grain yield were measured. A Richard curveequation, y = 1.1044/(1+e2.0253-5.1927x)1/0.4448, was developed with relative DMA and relative accumulated temperature.The basic parameter of ultimate growth (a) was 1, initial growth parameter (b) and growth rate parameter (c) changed dramatically, shape parameter (d) changed small. The accuracy and precision of relative model were tested with the data in 2008 and 2007 in Huadian, Jilin province, the dynamic model could make a good estimation for DMA dynamics with the accuracies of above 1.0486**, and the precision (R2) of above 0.9534**. According to accumulated temperature and the largest dry matter accumulation, the model can better predict the dynamic dry matter accumulation of the growth period. Sowing-date and density had a regulated role in the change rate of dry matter accumulation. The sixth leaf and waxy stage was the sensitive reaction period of dry matter accumulation rate with density. In the slow increase and decrease stage of the dry matter accumulation rate, the accumulated temperature for maize increased gradually; in the rapid increase stage, the accumulated temperature for maize decreased gradually; in the growing period, theaverage rate of dry matter accumulation of different cultivars showed as Xianyu 335> Denghai 661 >Yinong 103. Theaverage rate of dry matter accumulation of treatments with different sowing dates showed as early sowing > middle sowing>late sowing,and increased with the density increasing.

Key words: Sowing-date, Maize, Dry matter accumulation, Average rate, Simulation model

[1]Zhang S(张胜), Jia Z-Y(贾振业), Gao B-D(高炳德). Studies on the regularity of dry matter accumulation and distribution and its indexs of sping maize of 13.7–15.9 t ha-1 yield. J Inner Mongolia Agric Univ (内蒙古农业大学学报), 2000, 12(21): 1009–3575 (in Chinese with English abstract)
[2]Dordas C A, Sioulas C. Laboratory dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res, 2009, 110: 35–43
[3]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东), Zhang R-H(张仁和), Wu S-J(邰书静), Ren J-H(任建宏). Effects of planting date and density on population physiological indices of summer corn (Zea mays L.) in central Shaanxi irrigation area. Chin J Appl Ecol (应用生态学报), 2007, 18(6): 1247–1253 (in Chinese with English abstract)
[4]Zhang N(张宁), Du X(杜雄), Jiang D-L(江东岭), Cui Y-H(崔彦宏). Effect of sowing date on growth and yield of summer corn (Zea mays L). J Agric Univ Hebei (河北农业大学学报), 2009, 32(5): 1000–1573 (in Chinese with English abstract)
[5]Xing L-F(邢黎峰). The Richards model of Biology growth. J Biol Biomath (生物数学学报), 1998, 13(2): 348–353 (in Chinese)
[6]Yu Q(于强), Fu B-P(傅抱璞), Yao K-M(姚克敏). A universal growth model on rice LAI. Chin J Agrometeorol (中国农业气象), 1995, 16 (2): 6–8 (in Chinese)
[7]Wang X-L(王信理). Logistic simulating model on crop dry matter accumulating dynamics. Chin J Agrometeorol (中国农业气象), 1986, 7 (1): 14–19 (in Chinese )
[8]Gong Y-H(龚月桦), Liu Y-Z(刘迎洲), Gao J-F(高俊凤). Growth analysis on the process of grain filling in hybrid wheat 901 and its parents. Sci Agric Sin (中国农业科学), 2004, 37(9): 1288–1292 (in Chinese with English abstract)
[9]Xue X(薛香), Wu Y-E(吴玉娥), Chen R-J(陈荣江), Han Z-J(韩占江), Gao Q-L(郜庆炉). Comparison of different mathematical equations for simulating the grain filling process of wheat. J Triticeae Crops (麦类作物学报), 2006, 26(6): 169–171 (in Chinese with English abstract)
[10]Yang J C, Zhang J C, Wang Z Q, Zhu Q C, Wang W. Hormoneal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315–323
[11]Hou Y-H(侯玉虹), Chen C-Y(陈传永), Guo Z-H(郭志强), Hou L-B(侯立白), Dong Z-Q(董志强), Zhao M(赵明). Establishment of dry matter accumulation dymamic simulation model and analysis of growth characteristic for high-yielding population of spring maize. J Maize Sci (玉米科学), 2008, 16(6): 90–95 (in Chinese with English abstract)
[12]Lü X(吕新). Studies on Effects of Ecological Factors on Growth of Maize and Establishment of Climate Ecology Model and Appraisement System. PhD dissertation of Shandong Agricultural University, 2006 (in Chinese)
[13]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33 (4): 612-619 (in Chinese with English abstract)
[14]Yan D-C(严定春), Zhu Y(朱艳), Cao W-X(曹卫星). A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 20–25 (in Chinese with English abstract)
[15]Fu X-L(付雪丽), Zhao M(赵明), Zhou B-Y(周宝元), Cui G-M(崔国美), Ding Z-S(丁在松). Optimal model for dynamic characteristics of grain weight commonly used in wheat and maize. Acta Agron Sin (作物学报), 2009, 35(2): 309–316 (in Chinese with English abstract)
[16]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-M(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193 (in Chinese with English abstract)
[17]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95–98 (in Chinese with English abstract)
[18]Xie T-B(谢天保), Zeng C-C(曾春初), Xu S-M(徐述明). A primary test of suitable sowing date of spring corn in southern Hunan. Crop Res (作物研究), 2005, (4): 216–218 (in Chinese with English abstract)
[19]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东), Zhang R-H(张仁和), Wu S-J(邰书静), Ren J-H(任建宏). Effects of planting date and density on population physiological indices of summer corn (Zea mays L.) in central Shaanxi irrigation area. Chin J Appl Ecol (应用生态学报), 2007, 18(6): 1247–1253 (in Chinese with English abstract)
[20]Li M (李明), Li W-X(李文雄). Regulation of fertilizer and density on sink and source traits and yield of maize. Sci Agric Sin (中国农业科学), 2004, 37(8): 1130–1137 (in Chinese with English abstract)
[21]Xiao S-Z(肖淑招), Zhang G-Z(张桂宗), Meng X-Y(孟宪钺). Study on simulation model of grain filling rate in winter wheat. Chin J Agrometeorol (农业气象), 1986, 7(4): 9–13 (in Chinese with English abstract)
[22]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王红军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg ha-1. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898–1906 (in Chinese with English abstract)
[23]Hu Y-J(胡延吉), Lan J-H(兰进好), Zhao T-F(赵檀方). Dry matter accumulation and partitioning in three major wheat cultivars released in different period. J Shandong Agric Univ (山东农业大学学报), 1999, 30(4): 404−408 (in Chinese with English abstract)
[24]Li G-Q(李国强), Tang L(汤亮), Zhang W-Y(张文宇), Cao W-X(曹卫星), Zhu Y(朱艳). Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. Acta Agron Sin (作物学报), 2009, 35(12): 2258−2265 (in Chinese with English abstract)
[25]Ou L T M, Tim L S. Effect of increase temperature in apical regions of maize ears on starch synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79: 852–855
[26]Sun R(孙锐). The Yield Performance of Density Effect and Quantitative Analysis in Maize. PhD Dissertation of China Agricultural University, 2006 (in Chinese with English abstract)
[27]Dong X-W(东先旺), Liu S-T(刘树堂). A study of canopy apparent photosynthesis property in summer maize with super high yield. Acta Agric Boreal-Sin (华北农学报), 1999, 14(2): 1–5 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!