欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2135-2142.doi: 10.3724/SP.J.1006.2010.02135

• 耕作栽培·生理生化 • 上一篇    下一篇

旱稻297非结构性碳水化合物的生产与产量构成因子的关系

魏凤桐,陶洪斌,王璞*   

  1. 中国农业大学农学与生物技术学院,北京 100193
  • 收稿日期:2010-06-21 修回日期:2010-08-16 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 王璞,E-mail:wangpu@cau.edu.cn,Tel:010-62733611
  • 基金资助:

    本研究由国际合作项目(中国农业大学-IRRI)-“亚洲旱稻可持续性发展研究”资助。

Relationship of Non-Structure Carbohydrate Production and Yield Components of Aerobic Rice, HD297

WEI Feng-Tong,TAO Hong-Bin,WANG Pu*   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2010-06-21 Revised:2010-08-16 Published:2010-12-12 Published online:2010-10-09
  • Contact: 王璞,E-mail:wangpu@cau.edu.cn,Tel:010-62733611

摘要: 以旱稻297为试验材料,比较了在不施氮肥和150 kg hm-2的施氮量下旱稻297非结构性碳水化合物的生产能力、运转特点及其与产量构成因子的关系,分析了旱稻297氮肥投入与碳水化合物生产和产量形成间的关系。试验结果表明,开花前储藏的非结构性碳水化合物对产量的贡献率为32%~54%,施氮降低了开花前非结构性碳水化合物对产量的贡献率,相对而言开花后光合产物对产量的贡献率略有提高;开花前非结构性碳水化合物的转移效率为48%~65%,施氮后转移效率略有降低;总体而言,施氮降低了开花前后分配给单个籽粒的非结构性碳水化合物的数量,导致千粒重降低;在一定的范围内,随着开花期叶片中可溶性糖浓度的提高,结实率显著提高,但是随着穗中淀粉浓度的提高,结实率显著降低。因此,施氮后非结构性碳水化合物积累不足和转移效率降低同时限制了千粒重和结实率的提高,而叶片中可溶性糖浓度偏低和穗中淀粉浓度偏高限制了结实率的提高,是限制产量提高的主要原因。此外,旱稻297花后光合产物生产能力较低,是限制产量提高的又一原因。

关键词: 旱稻, 非结构性碳水化合物, 千粒重, 结实率, 转移效率, 贡献率

Abstract: In the system of “aerobic rice”, one of the problems is that the grain yield can not be improvedunder a relatively high N application rate. Production and translocation of non-structure carbohydrate (NSC) contributed greatly to grain yield. Moreover, nitrogen influenced these two procedures a lot through affecting photosynthesis and C metabolism. There have been many studies on the contribution of pre-anthesis and post-anthesis NSC to grain yield on wheat, lowland rice, etc., but little was done on aerobic rice. Therefore, production and translocation of NSC of HD297 was studied in a field experiment to explain the constraints for improving grain yield of HD297 under a relatively high N application rate. The results showed that the contribution of pre-anthesis NSC to grain yield was 32–54% and decreased slightly with 150 kg N ha-1. The translocation efficiency of NSC before anthesis was 48–65%. Compared with 0 kg N ha-1 treatment, the translocation efficiency of NSC decreased with 150 kg N ha-1. The amount of NSC supply to each spikelet decreased with 150 kg N ha-1, and thus reduced the thousand-grain weight. The percentage of filled grains increased with higher concentration of water-soluble carbohydrate (WSC) in leaf and decreased with higher concentration of starch in panicle. Therefore, the low percentage of filled grains and thousand-grain weight were related to the poor NSC accumulation and translocation, which were the main limit factors for improving the grain yield with 150 kg N ha-1. Furthermore, the low production of photosynthetic assimilation after anthesis was another reason of yield limitation.

Key words: Aerobic rice, Contribution proportion, Nitrogen, Non-structure carbohydrate, Percentage of filled grains, Thousand-grain weight, Translocation efficiency

[1]Cock J H, Yoshida S. Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Jpn J Crop Sci, 1972, 41: 226–234 (in English with Japanese abstract)
[2]Yang J C, Zhang J H, Wang Z Q, Liu L J, Zhu Q S. Carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficit. Agron J, 2002, 94: 102–109
[3]Thomas G, Hans S. Pre-Anthesis reserve utilization for Protein and carbohydrate synthesis in grains of wheat. Plant Physiol, 1999, 121: 871-878
[4]Inoue T, Inanaga S, Sugimoto Y, El Siddig K. Contribution of pre-anthesis assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soil moisture. Photosynthetica, 2004, 42: 99–104
[5]Wang Z-Q(王志琴), Yang J-C(杨建昌), Zhu Q-S(朱庆森), Lang Y-Z(郎有忠). Relation of the usable carbohydrate reserved in stems and sheaths at heading stage with grain-filling in rice plants. J Jiangsu Agric Coll (江苏农学院学报), 1997, 18(4): 13–17 (in Chinese with English abstract)
[6]Yang J-C(杨建昌), Su B-L(苏宝林), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). Characteristics and physiology of grain-filling in intersubspecific hybrid rice. Sci Agric Sin (中国农业科学), 1998, 31(1): 7–14 (in Chinese with English abstract)
[7]Weng J H, Takeda T, Agata W, Hakoyama S. Studies on dry matter and grain production of rice plants. I. Influence of the reserved carbohydrate until heading stage and the assimilation products during the ripening period on grain production. Jpn J Crop Sci, 1982, 51: 500–509 (in Japanese with English abstract)
[8]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Cai J-Z(蔡建中), Su Z-F(苏祖芳), Ling L(凌励). Investigation on the population quality of high yields and its optimizing control programme in rice. Sci Agric Sin (中国农业科学), 1993, 26(6): 1–11 (in Chinese with English abstract)
[9]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res, 2002, 74: 93–101
[10]Virmani S S. Hybrid rice. Adv Agron, 1996, 57: 377–462
[11]Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559
[12]Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006, 96: 455–465
[13]Sujatha K B, Uprety D C, Nageswara Rae D, Raghuveer Rao P, Dwivedi N. Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant Soil Environ, 2008, 54: 155–162
[14]Okawa S, Makino A, Mae T. Effect of low irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice. Ann Bot, 2003, 92: 357–364
[15]Elvio D P, Michele R. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res, 2008, 105: 202–210
[16]Van Herwaarden A F, Angus J F, Richards R A, Farquhar G D. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertilizer II. Carbohydrate and protein dynamics. Aust J Agric Res, 1998, 49: 1083–1093
[17]Nie J, Zheng S X, Dai P A, Xiao J, Yi G Y. Physiological basis of photosynthetic function and senescence of rice leaves as regulated by controlled-release nitrogen fertilizer. Rice Sci, 2005, 12(4): 275–282
[18]Zhang L M, Lin S, Bouman B A M, Xue C Y, Wei F T, Tao H B, Yang X G, Wang H Q, Zhao D L, Klaus D. Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing, China. Field Crops Res, 2009, 114: 45–53
[19]Yoshida S, Forno D, Cock J, Gomez K. Determination of sugar and starch in plant tissue. In: Yoshida S ed. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Los Banos, Laguna, Phillipines: International Rice Research Institute, 1976. pp 46–49
[20]Qi C-H(戚昌瀚). Approach to the optimizing control of the relationship of the sink-source in rice varieties. Acta Agric Univ Jiangxiensis (江西农业大学学报), 1993, 15(3): 1–5 (in Chinese with English abstract)
[21]Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 44–216
[22]Yang J C, Zhang J Z, Wang Z Q, Zhu Q S, Wang W. Remobilization of carbon reserves in response to water deficit during grain-filling of rice. Field Crops Res, 2001, 71: 47–55
[23]Yang J C, Zhang J H, Wang Z Q, Liu L J, Zhu Q S. Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Sci, 2003, 43(6): 2099–2108
[24]Wang-Z(王忠). Plant Physiology (植物生理学). Beijing: China Agriculture Press, 2000. pp 221–263
[25]Li M-Y(李木英), Shi Q-H(石庆华), Pan X-H(潘晓华), Zhang R-Z(张荣珍). Studies on the physiological factors affecting the carbohydrate transfer in stem and sheath during filling stage in two-line hybrid rice. Acta Agric Univ Jiangxiensis (江西农业大学学报), 1999, 21(3): 329–332 (in Chinese with English abstract)
[26]Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, l989, 40: 95–l17
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[3] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[6] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[7] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[8] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[9] 白冰,杨雨豪,王小慧,贾浩,吴尧,史磊刚,尹小刚,陈阜. 基于农作制分区的1985—2015年中国小麦生产时空变化[J]. 作物学报, 2019, 45(10): 1554-1564.
[10] 王小慧,姜雨林,刘洋,卢捷,尹小刚,史磊刚,黄晶,褚庆全,陈阜. 基于县域单元的我国水稻生产时空动态变化[J]. 作物学报, 2018, 44(11): 1704-1712.
[11] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[12] 王加峰,郑才敏,刘维,罗文龙,王慧,陈志强*,郭涛*. 基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建[J]. 作物学报, 2016, 42(08): 1160-1167.
[13] 占东霞,张超,张亚黎,罗宏海,勾玲,张旺锋. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献[J]. 作物学报, 2015, 41(12): 1880-1887.
[14] 焦聪聪,黄吉祥,汪义龙,张晓玉,熊化鑫,倪西源,赵坚义. 利用非条件和条件QTL解析油菜产量相关性状的遗传关系[J]. 作物学报, 2015, 41(10): 1481-1489.
[15] 张冬玲,张洪娜,郝晨阳,王兰芬,李甜,张学勇*. 花后冠层温度对小麦产量的影响及几个关联SSR位点的效应分析[J]. 作物学报, 2015, 41(04): 548-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!