欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1039-1048.doi: 10.3724/SP.J.1006.2011.01039

• 耕作栽培·生理生化 • 上一篇    下一篇

应用两种近地可见光成像传感器估测棉花冠层叶片氮素状况

王方永1,王克如1,2,李少昆1,2,*,高世菊2,肖春华1,陈兵1,陈江鲁1,吕银亮1,刁万英1   

  1. 1 新疆兵团绿洲生态农业重点开放实验室 / 新疆作物高产研究中心, 新疆石河子 832003; 2 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室, 北京 100081
  • 收稿日期:2010-11-19 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 李少昆, E–mail: Lishk@mail.caas.net.cn, Tel:010–82108891
  • 基金资助:

    本研究由国家自然科学基金项目(30860139)和国家高技术研究发展计划(863计划)项目(2006AA10Z207, 2006AA10A302)资助。

Estimation of Canopy Leaf Nitrogen Status Using Imaging Spectrometer and Digital Camera in Cotton

WANG Fang-Yong1,WANG Ke-Ru1,2,LI Shao-Kun1,2,*,GAO Shi-Ju2,XIAO Chun-Hua1,CHEN Bing1,CHEN Jiang-Lu1,LÜ Yin-Liang1,DIAO Wan-Ying1   

  1. 1 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Construction Crops / The Center of Crop High-Yield Research, Shihezi 832003, China; 2 Key Laboratory of Crop Physiology and Production, Ministry of Agriculture/ Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, China
  • Received:2010-11-19 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: 李少昆, E–mail: Lishk@mail.caas.net.cn, Tel:010–82108891

摘要: 作物叶片含氮量是作物长势监测、产量及品质估测的重要依据,实时、无损地监测植株体内氮素营养状况有助于棉花氮肥的正确施用。本研究比较2种近地可见光传感器的光谱和颜色信息用于监测棉花氮素营养的能力, 确定MSI200成像光谱仪和数码相机监测棉花冠层叶片氮含量最佳的波段、光谱指数和颜色参数并建立估测模型。结果表明,在可见光波段,冠层反射率随着冠层叶片氮素含量的增加而降低,且叶片含氮量的光谱敏感波段主要位于绿光和红光区域;与棉花冠层叶片含氮量的拟合效果最好的2种传感器的光谱指数为差值指数DI(R580, R680)和G–R,而颜色参数则分别为b*和H,同一传感器以光谱指数的拟合效果优于颜色参数,不同传感器以MSI200数据的拟合效果优于数码相机;利用独立试验资料检验所建模型的估测性能表明,差值指数对棉花冠层叶片氮素的预测能力优于比值指数和归一化差值指数,DI(R580, R680)和G–R所建模型的估测精度最高,分别为0.8131和0.7636。因此,利用数码相机和MSI200型成像光谱仪可以定量估测棉花冠层叶片氮素营养状况。

关键词: 棉花冠层, 叶片含氮量, 成像光谱仪, 数码相机, 光谱指数, 颜色参数

Abstract: Leaf nitrogen content is an important index to evaluate and estimate crop growth status, yield and quality. Real-time and non-destructive measurement of nitrogen nutrition status of plants is useful for nitrogen fertilizer management in cotton (Gossypium hirsutum L.) production. The objectives of this study were to determine the relationships of ground–based canopy spectral reflectance, spectral index and color parameters obtained by using common digital camera (Olympus C-5060) and imaging spectrometer (MSI200), with canopy leaf nitrogen content, and to develop regression models for estimating leaf nitrogen content in cotton. The results showed that canopy spectral reflectance decreased with increasing leaf nitrogen content, and the bands sensitive to leaf nitrogen content occurred the green and red regions mainly. Furthermore, the models to retrieve canopy leaf nitrogen contents using DI (R580, R680) and G–R were most feasible with the maximum determination coefficients (R2) and the minimum standard error (SE) for two visible sensors, respectively. Additional, b* (CIE 1976 L*a*b* color model) and H (HSI color model) were the optimum color parameters. On the whole, for the fitting effects, the spectral index was superior to color parameters for the same sensor, and MSI200 superior to digital camera. Then, the prediction performances of the spectral indices of digital camera were validated by using independent dataset. We found that difference indices DI (R580, R680) and G–R were the optimum indicators of canopy leaf nitrogen content with the highest predictive precision (0.8131 and 0.7636, respectively) and accuracy (1.0149 and 0.9661) and the lowest RMSE (2.3313 and 2.7406 mg g–1, approximately 6.52% and 8.24% of the mean). Hence, canopy spectral parameters in visible region may provide an effective and feasible means of estimating canopy leaf nitrogen contents quantitatively in cotton field.

Key words: Cotton canopy, Leaf nitrogen content, Imaging spectrometer, Digital camera, Spectral index, Color parameter

[1]Lee Y J, Yang C M, Chang K W, Shen Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J, 2008, 100: 205–212
[2]Gerik T J, Oosterhuis D M, Torbert H A. Managing cotton nitrogen supply. Adv Agron, 1998, 64: 115–147
[3]Reddy K R, Koti S, Davidonis G H, Reddy V R. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality. Agron J, 2004, 96: 1148–1157
[4]Fernandez C J, McInnes K J, Cothren J T. Water status and leaf area production in water- and nitrogen-stressed cotton. Crop Sci, 1996, 36: 1224–1233
[5]Jaynes D B, Colvin T S, Karlen D L, Cambardella C A, Meek D W. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J Environ Qual, 2001, 30: 1305–1314
[6]Thomas J R, Gausman H W. Leaf reflectance vs leaf chlorophyll and carotenoid concentration for eight crops. Agron J, 1977, 69: 799–802
[7]Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Intl J Remote Sens, 1998, 19: 657–675
[8]Fang Z, Bouwkamp J, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non–yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot, 1998, 49: 503–510
[9]Filella I, Serrano L, Serra J, Peńuelas J. Evaluating wheat nitrogen status with canopy re?ectance indices and discriminant analysis. Crop Sci, 1995, 35: 1400–1405
[10]Kawashima S, Nakatani M. An algorithm forestimating chlorophyll content in leaves using a video camera. Ann Bot, 1998, 81: 49–54
[11]Al-Abbas A H, Barr R, Hall J D, Crane F L, Baumagardner M F. Spectra of normal and nutrient–deficient maize leaves. Agron J, 1974, 66: 16−20
[12]Xue L, Yang L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogrammetry Remote Sens, 2009, 64, 97–106
[13]Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J, 1994, 86: 934–938
[14]Xue L, Cao W, Luo W, Dai T, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron J, 2004, 96: 135–142
[15]Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agron J, 2005, 97: 89–98
[16]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112
[17]Tang Y-L(唐延林), Huang J-F(黄敬峰), Wang R-C(王人潮). Change law of hyperspectral data with chlorophyll and carotenoid for rice at different developmental stages. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 59–66 (in Chinese with English abstract)
[18]Tian Y-C(田永超), Yang J(杨杰), Yao X(姚霞), Zhu Y(朱艳), Cao W-X(曹卫星). A newly developed blue nitrogen index for estimating canopy leaf nitrogen concentration of rice. Chin J Appl Ecol (应用生态学报), 2010, 21(4): 966–972 (in Chinese with English abstract)
[19]Pu R–L(浦瑞良), Gong P(宫鹏). Hyperspectral Remote Sensing and Its Application (高光谱遥感及其应用). Beijing: Higher Education Press, 2000. p 22 (in Chinese)
[20]Schut A G T , Ketelaars J J M H. Imaging spectroscopy for early detection of nitrogen deficiency in grass swards. Neth J Agr Sci, 2003, 51: 297–317
[21]Noh H, Zhang Q, Shin B, Han S, Feng L. A neural network model of maize crop nitrogen stress assessment for a multi–spectral imaging sensor. Biosyst Eng, 2006, 94: 477–485
[22]Tan H-Z(谭海珍), Li S-K(李少昆), Wang K-R(王克如), Xie R-Z(谢瑞芝), Gao S-J(高世菊), Ming B(明博), Yu Q(于青), Lai J-C(赖军臣), Liu G-Q(刘国庆), Tang Q-X(汤秋香). Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer. Acta Agron Sin (作物学报), 2008, 34(10): 1812–1817 (in Chinese with English abstract)
[23]Wang F-Y(王方永), Wang K-R(王克如), Li S-K(李少昆), Chen B(陈兵), Chen J-L(陈江鲁). Estimation of chlorophyll and nitrogen contents in cotton leaves using digital camera and imaging spectrometer. Acta Agron Sin (作物学报), 2010, 36(11): 1981–1989 (in Chinese with English abstract)
[24]Gonzalez R C, Woods R E. Digital Image Processing, Second Edn. 出版地: Pearson Education, Inc., Publishing as Prentice Hall, 2002. pp 4–10
[25]Ahmad I S, Reid J F. Evaluation of colour representations for maize images. J Agric Engng Res, 1996, 63: 185–195
[26]Adamsen F J, Pinter P J, Jr, Barnes E M, LaMorte R L, Wall G W, Leavitt S W, Kimball B A. Measuring wheat senescence with a digital camera. Crop Sci., 1999, 39: 719–724
[27]Karcher D E, Richardson M D. Quantifying turfgrass color using digital image analysis. Crop Sci, 2003, 43: 943–951
[28]Graeff, S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron, 2003, 19: 611–618
[29]Graeff S, Pfenning J, Claupein W, Liebig H P. Evaluation of image analysis to determine the N-fertilizer demand of Broccoli plants (Brassica oleracea convar. botrytis var. italica). Adv Optical Technol, 2008, DOI:10.1155/2008/359760
[30]Jia L, Chen X, Zhang F, Buerkert A, Römheld V. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. J Plant Nutr, 2004, 27: 441–450
[31]Pagola M, Ortiz R, Irigoyen I, Bustince H, Barrenechea E, Aparicio-Tejo P, Lamsfus C, Lasa B. New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with SPAD-502. Comp Electron Agric, 2009, 65: 213–218
[32]Zhang L-Z(张立周), Wang D-W(王殿武), Zhang Y-M(张玉铭), Cheng Y-S(程一松), Li H-J(李红军), Hu C-S(胡春胜). Diagnosis of N nutrient status of corn using digital image processing technique. Chin J Eco-Agric (中国生态农业学报), 2010, 18(6): 1340–1344 (in Chinese with English abstract)
[33]Wang K-R(王克如), Li S-K(李少昆), Wang C-T(王崇桃), Yang L(杨蕾), Xie R-Z(谢瑞芝), Gao S-J(高世菊), Bai J-H(柏军华). Acquired chlorophyll concentration of cotton leaves with technology of machine vision. Acta Agron Sin (作物学报), 2006, 32(1): 34–40 (in Chinese with English abstract)
[34]Wang F-Y(王方永), Li S-K(李少昆), Wang K-R(王克如), Sui X-Y(隋学艳), Bai J-H(柏军华), Chen B(陈兵), Liu G-Q(刘国庆), Tan H-Z(谭海珍). Obtaining information of cotton population chlorophyll by using machine vision technology. Acta Agron Sin (作物学报), 2007, 33(12): 2041–2046 (in Chinese with English abstract)
[35]Lei Y-W(雷咏雯), Wei C-Z(危常州), Ye J(冶军), Hou Z-A(侯振安), Li J-H(李俊华), Jia L-L(贾良良). Application of computer-aided cotton leaf-color analysis in nitrogen status diagnosis in cotton plants. J Shihezi Univ (Nat Sci) (石河子大学学报•自然科学版), 2004, 22(2): 113–116 (in Chinese with English abstract)
[36]Massart D L, Vandeginste B G M, Deming S M, Michotte Y, Kaufman L. Chenometrics: A Textbook. Elsevier, Amsterdam, 1988
[37]Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron J, 1996, 88: 1–5
[1] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[2] 杨海波,张加康,杨柳,贾禹泽,刘楠,李斐. 品种和生育时期对冠层光谱指数(NDVI)估测马铃薯植株氮素浓度的影响[J]. 作物学报, 2020, 46(6): 950-959.
[3] 韩康, 于静, 石晓华, 崔石新, 樊明寿. 不同光谱指数反演马铃薯叶片氮累积量的研究[J]. 作物学报, 2020, 46(12): 1979-1990.
[4] 王方永, 王克如, 李少昆, 陈兵, 陈江鲁. 利用数码相机和成像光谱仪估测棉花叶片叶绿素和氮素含量[J]. 作物学报, 2010, 36(11): 1981-1989.
[5] 谭海珍;李少昆;王克如;谢瑞芝;高世菊;明博;于青;赖军臣; 刘国庆;汤秋香. 基于成像光谱仪的冬小麦苗期冠层叶绿素密度监测[J]. 作物学报, 2008, 34(10): 1812-1817.
[6] 周冬琴;朱艳;田永超;姚霞;曹卫星. 以冠层反射光谱监测水稻叶片氮积累量的研究[J]. 作物学报, 2006, 32(09): 1316-1322.
[7] 李映雪;朱艳;田永超;姚霞;秦晓东;曹卫星. 小麦叶片氮含量与冠层反射光谱指数的定量关系[J]. 作物学报, 2006, 32(03): 358-362.
[8] 李映雪;朱艳;田永超;姚霞 ;秦晓东;曹卫星. 小麦叶片氮素状况与冠层反射光谱指数的关系[J]. 作物学报, 2006, 32(02): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!