欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1049-1059.doi: 10.3724/SP.J.1006.2011.01049

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响

骆兰平,于振文*,王东,张永丽,石玉   

  1. 山东农业大学 / 农业部作物生理生态与栽培重点开放实验室,山东泰安 271018
  • 收稿日期:2010-10-14 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 于振文, E-mail: yuzw@sdau.edu.cn; Tel: 0538-8241484
  • 基金资助:

    本研究由国家自然科学基金项目(30871478)和农业部现代小麦产业技术体系项目(nycytx-03)资助。

Effects of Planting Density and Soil Moisture on Flag Leaf Photosynthetic Characteristics and Dry Matter Accumulation and Distribution in Wheat

LUO Lan-Ping,YU Zhen-Wen*,WANG Dong,ZHANG Yong-Li,SHI Yu   

  1. Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture / Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-10-14 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: 于振文, E-mail: yuzw@sdau.edu.cn; Tel: 0538-8241484

摘要: 2008—2010年连续2个小麦生长季,选用高产小麦品种济麦22,采用测墒补灌的方法,研究土壤水分对不同密度小麦旗叶光合性能、干物质积累与分配、籽粒产量及水分利用效率的影响。第一年在150株 m−2 (M1)和225株 m−2 (M2)两个密度下设置3个土壤含水量处理,即拔节期65%+开花期60%(W0)、拔节期75%+开花期75%(W1)和拔节后7 d 75%+开花后7 d 75%(W2);第二年选用第一年的节水高产密度处理M1,但土壤含水量调整为拔节期75%+开花期60% (W’0)、拔节期85%+开花期75%(W’1)和拔节后7 d 85%+开花后7 d 75%(W’2)。两种基本苗密度相比较,M1处理灌浆中后期的旗叶最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)和开花后干物质积累量和干物质向籽粒转运量显著高于M2处理。W2处理灌浆中后期的旗叶Fv/FmΦPSII显著高于W1处理,而W’2处理灌浆中后期的旗叶光合速率(Pn)、蒸腾速率(Tr)、单叶水分利用效率(WUEL)和气孔导度(Gs)均显著高于W’1处理。在M1密度下,W2处理的干物质向籽粒的转运量,开花后干物质积累量及其对籽粒的贡献率显著高于W1处理,获得了较高的籽粒产量和水分利用效率,且干物质积累与分配、籽粒产量和水分利用效率在两年中结果趋势一致。在150株m−2密度下,0~140 cm土层平均土壤相对含水量拔节后7 d和开花后7 d均为75%和75%,是本试验条件下节水高产的最佳处理。

关键词: 小麦, 土壤水分, 密度, 光合性能, 干物质积累与分配, 产量, 水分利用效率

Abstract: Water shortage is one of the major problems in wheat (Triticum aestivum L.) production in northern plain in China. Water-saving technique is most important in wheat cultivation. In this study, we adopted water-controlled irrigation based on measuring soil moisture to improve the fixed-amount irrigation strategy in previous studies. Using wheat cultivar Jimai 22, we measured the photosynthetic performance of flag leaf and dry matter accumulation and distribution in plant under two plant densities and three irrigation treatments. In the 2008–2009 growing season, the plant densities were 150 (M1) and 225 (M2) seedlings per square meter, and the irrigation treatments were designed as relative soil moisture (SM) of 65% at jointing and 60% at anthesis (W0), SM of 75% at jointing and 75% at anthesis (W1), and SM of 75% at 7 d after jointing and 75% at 7 d after anthesis (W2). In the 2009–2010 growing season, only one plant density (M1) was adopted, which showed better performance in yield and water use efficiency (WUE) in the 2008–2009 growing season. Besides, the irrigation treatments were adjusted to SM of 75% at jointing and of  60% at anthesis (W’0), SM of 85% at jointing and 75% at anthesis (W’1), and SM of 85% at 7 d after jointing and SM 75% at 7 d after anthesis (W’2). Under the same irrigation treatment, maximal photochemical efficiency of PSII (Fv/Fm) and actual photochemical efficiency of PSII (ΦPSII) under M1 density were higher than those under M2 density from middle to late grain-filling stage, and dry matter accumulation amount after anthesis and dry matter translocation amount tograins in M1 treatment were significantly higher than those in M2 treatment. Compared with W1 treatment, Fv/Fm and ΦPSII of W2 treatment were significantly higher from middle to late grain-filling stage, and photosynthetic rate (Pn), evapotranspiration (Tr), leaf water use efficiency (WUEL), and stomatal conductance (Gs) were also higher in W’2. Under the M1 plant density, the dry matter accumulation amount after anthesis and its contribution to grains were higher in W2 than in W1 treatment, whereas the grain yield and WUE of W2 treatment were significantly higher than those in W1 treatment. The changing tendency of dry matter accumulation and distribution, grain yield, and WUE were similar in both growing seasons. In wheat growing environment similar to the condition of this experiment, we propose the best plant density is 150 seedlings per square meter and the best irrigating both at jointing and anthesis is SM (0–140 cm soil layer) of 75% at 7 d after both stages.

Key words: Wheat, Soil moisture, Planting density, Photosynthetic characteristics, Dry matter accumulation and distribution, Yield, Water use efficiency

[1]Ma X-M(马新明), Xiong S-P(熊淑萍), Li L(李琳), Zhang J-J(张娟娟), He J-G(何建国). Effects of soil moisture on photosynthetic characteristics of different specialized end-uses winter wheat at their later growth stages and on their yields. Chin J Appl Ecol (应用生态学报), 2005, 16(1): 83-87 (in Chinese with English abstract)
[2]Ziaei A N, Sepaskhah A R. Model for simulation of winter wheat yield under dryland and irrigated conditions. Agric Water Manag, 2003, 58: 1-17
[3]Ren W(任巍), Yao K-M(姚克敏), Yu Q(于强), Ou-Yang Z(欧阳竹), Wang L(王菱). Effect of water control in combination of depth and amount on dry matter partition and water use efficiency of winter wheat. Chin J Eco-Agric (中国生态农业学报), 2003, 11(4): 92-94 (in Chinese with English abstract)
[4]Jiang D(姜东), Xie Z-J(谢祝捷), Cao W-X(曹卫星), Dai T-B(戴廷波), Jing Q(荆奇). Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin (作物学报), 2004, 30(2): 175-182 (in Chinese with English abstract)
[5]Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458
[6]Kang S Z, Zhang L, Liang Y L, Hu Y T, Cai H J, Gu B J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric Water Manag, 2002, 55: 203-216
[7]Liu P(刘培), Cai H-J(蔡焕杰), Wang J(王健). Effects of soil water stress on growth development, dry-matter partition and yield constitution of winter wheat. Res Agric Mod (农业现代化研究), 2010, 31(3): 330-333 (in Chinese with English abstract)
[8]Hiltbrunner J, Streit B, Liedgens M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover. Field Crops Res, 2007, 102: 163-171
[9]Lloveras J, Manent J, Viudas J, Lopez A, Santiveri P. Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agron J, 2004, 96: 1258-1265
[10]Qu H-J(屈会娟), Li J-C(李金才), Shen X-S(沈学善), Wei F-Z(魏凤珍), Wang C-Y(王成雨), Zhi S-J(郅胜军). Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar Lankao Aizao 8. Acta Agron Sin (作物学报), 2009, 35(1): 124-131 (in Chinese with English abstract)
[11]Hou Z-D(侯宗东), Wang G-X(王根轩). Elementary study on net photosynthetic rate of spring wheat under different densities and soil water status. J Desert Res (中国沙漠), 2001, 21(3): 236-239 (in Chinese with English abstract)
[12]Luo H-Y(骆洪义), Zhang F-S(张福锁). Soil Science Experiments (土壤学实验). Chengdu: Chengdu Science and Technology University Press, 1995 (in Chinese).
[13]Shan L(山仑), Kang S-Z(康绍忠), Wu P-T(吴普特). Water Saving Agriculture in China (中国节水农业). Beijing: Chinese Agriculture Press, 2004. pp 229-230 (in Chinese)
[14]Liu Z-J(刘增进), Li B-P(李宝萍), Li Y-H(李远华), Cui Y-L(崔远来). Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Trans CSAE (农业工程学报), 2004, 20(4): 58-63 (in Chinese with English abstract)
[15]Du T-S(杜太生), Kang S-Z(康绍忠), Wang Z-C(王振昌), Wang F(王锋), Yang X-Y(杨秀英), Su X-L(苏兴礼). Responses of cotton growth, yield, and water use efficiency to alternate furrow irrigation. Acta Agron Sin (作物学报), 2007, 33(12): 1982-1990 (in Chinese with English abstract)
[16]Jiao J(焦健), Gao Q-R(高庆荣), Hao Y-Y(郝媛媛), Wang D-W(王大伟), Wang L(王霖), Qiu X-M(邱新民). Diurnal changes of photosynthetic and physiological parameters in different male sterile lines of wheat. Acta Agron Sin (作物学报), 2007, 33(8): 1267-1271 (in Chinese with English abstract)
[17]Zhao H(赵辉), Dai T-B(戴廷波), Jiang D(姜东), Jing Q(荆奇), Cao W-X(曹卫星). Effects of drought and water logging on flag leaf post-anthesis photosynthetic characteristics and assimilates translocation in w inter wheat under high temperature. Chin J Appl Ecol (应用生态学报), 2007, 18(2): 333-388 (in Chinese with English abstract)
[18]Wang J-S(王建生), Xu Z-K(徐子恺), Yao J-W(姚建文). Analysis of food throughput per unit water use. Adv Water Sci (水科学进展), 1999, 10(4): 429-434 (in Chinese with English abstract)
[19]Li Y-S(李运生), Wang L(王菱), Liu S-P(刘士平), Wang J-S(王吉顺). The influence of different amounts of water supplied at different depths in soil-root interface on root distribution and yield of winter wheat. Acta Ecol Sin (生态学报), 2002, 22(10): 1680-1687 (in Chinese with English abstract)
[20]Zhang H X, Wang M, Liu Y C. Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci, 1999, 19: 37-45
[21]Li J M, Inanaga S, Li Z H, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manag, 2005, 76: 8-23
[22]Qiu G Y, Wang L M, He X H, Zhang X Y, Chen S Y, Chen J, Yang Y H. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric For Meteorol, 2008, 148: 1848-1859
[23]Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46: 21-27
[24]Shah N H, Paulsen G. M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 2003, 257: 219-226
[25]Hu M-Y(胡梦芸), Zhang Z-B(张正斌), Xu P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin (作物学报), 2007, 33(11): 1884-1891 (in Chinese with English abstract)
[26]Xue Q W, Zhu Z X, Musick J T, Stewart B A, Dusek D A. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J Plant Physiol, 2006, 163: 154-164
[27]Ma D-H(马东辉), Zhao C-X(赵长星), Wang Y-F(王月福), Wu G(吴钢), Lin Q(林琪). Effects of nitrogen fertilizer rate and post-anthesis soil water content on photosynthetic characteristics in flag leaves and yield of wheat. Acta Ecol Sin (生态学报), 2008, 28(10): 4896-4901 (in Chinese with English abstract)
[28]Li N(李宁), Zhai Z-X(翟志席), Li J-M(李建民), Duan L-S(段留生), Li Z-H(李召虎). Effect of sowing date and planting density on fluorescence induction kinetic parameters and yield in different spike type cultivars. Acta Agric Boreali-Sin (华北农学报), 2009, 24(suppl): 199-204 (in Chinese with English abstract)
[29]Wang J-R (王家仁), Guo F-H (郭风洪), Sun M-Z (孙茂真), Cui R-L(崔若亮), Guo C-R(郭春荣), Bian P(边萍), Fu G-Y(付光永). Preliminary report on water saving and high efficiency technological indexes for winter water wheat irrigation adjusting water shortage. J Irrig Drainage (灌溉排水学报), 2004, 23(1): 36-40 (in Chinese with English abstract)
[30]Guo T-C(郭天财), Zha F-N(查菲娜), Ma D-Y(马冬云), Song X(宋晓), Yue Y-J(岳艳军). Effects of plant density on the accumulation and transfer of dry matter and nitrogen and grain yield of two winter wheat cultivars with different spike types. Acta Agric Boreali-Sin (华北农学报), 2007, 22(6): 152-156 (in Chinese with English abstract)
[31]Zhang Z-X(张忠学), Yu G-R(于贵瑞). Effects of irrigation scheduling on development and water use efficiency in winter wheat. J Irrig Drainage(灌溉排水学报), 2003, 22(2): 1-4 (in Chinese with English abstract)
[32]Zhang Y-P(张永平), Wang Z-M(王志敏), Wang P(王璞), Zhao M(赵明). Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin (中国农业科学), 2003, 36(10): 1143-1149 (in Chinese with English abstract)
[33]Ju H(居辉), Lan X(兰霞), Li J-M(李建民), Zhou D-X(周殿玺), Su B-L(苏宝林). Effects of different irrigation systems on winter wheat yield and water consumption. J China Agric Univ (中国农业大学学报), 2000, 5(5): 23-29 (in Chinese with English abstract)
[34]Liu P(刘萍), Guo W-S(郭文善), Xu M-Y(徐明月), Feng C-N(封超年), Zhu X-K(朱新开), Peng Y-X(彭永欣). Effect of planting density on grain yield and quality of weak-gluten and medium-gluten wheat. J Triticeae Crops (麦类作物学报), 2006, 26(5): 117-121 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!