欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1289-1300.doi: 10.3724/SP.J.1006.2011.01289

• 耕作栽培·生理生化 • 上一篇    下一篇

高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异

肖鑫辉,李向华,刘洋,张应,王克晶*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081
  • 收稿日期:2010-09-30 修回日期:2011-03-06 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 王克晶, E-mail: wangkj@caas.net.com, Tel: 010-62189198
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费项目(2004DTB3J090)资助。

Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress

XIAO Xin-Hui,LI Xiang-Hua,LIU Yang,ZHANG Ying,WANG Ke-Jing*   

  1. National Key Facility for Crop Gene Resources and Genetic Important, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-09-30 Revised:2011-03-06 Published:2011-07-12 Published online:2011-05-11
  • Contact: 王克晶, E-mail: wangkj@caas.net.com, Tel: 010-62189198

摘要: 在总含量3%高盐碱原土盆栽条件下,对搜集于津唐盐碱地895份野生大豆植株进行耐盐碱性评价。通过测定203株死亡及收获植株茎、叶中Na+、Cl、K+、Ca2+、Mg2+的含量,分析高盐碱胁迫下野生大豆植株离子含量的分布及野生大豆植株死亡和成熟时体内离子积累程度,并探讨耐盐碱型野生大豆的耐性机制。结果表明,野生大豆植株在营养生长期间,盐碱胁迫致死植株茎、叶无机离子含量在不同存活时间组间并未达显著水平,Na+和Cl积累达到一定含量即出现死亡现象,致死植株茎中Na+和Cl离子范围分别为3.239~4.682和4.639~6.328,叶中分别为1.754~2.349和4.126~5.073;能够存活到成熟的耐盐碱型野生大豆植株茎叶Na+和Cl含量存在低中高3种类型。高耐型野生大豆茎、叶平均Na+和Cl含量显著低于低耐盐型,且茎中K+和叶中Ca2+和Mg2+含量较高。在高耐型野生大豆植株茎叶中也存在Na+和Cl离子含量高水平和低水平两种类型,推测野生大豆可能存在两种耐盐碱机制,其一为高耐受性,其二为低吸收性。

关键词: 野生大豆, 盐碱胁迫, 离子积累, 耐盐碱机理

Abstract: We usedpot cultivation with coastal soil containing total 3% salinity to identify the salt tolerance of 895 wild soybean plants collected in the Tianjin and Tangshan region of China, and to determine Na+, Cl, K+, Ca2+, Mg2+ contents in the stems and leaves of 203 plants that died at different stages and at maturity. The aim was to evaluate the differences of ion accumulations in the dead and survival wild soybean plants, and to discuss the mechanism of salt tolerance. The results showed that there were no significant differences in the content of every ion (Na+, Cl, K+, Ca2+, Mg2+) among these plants with a different survival time during the vegetative growth period. When the content of Na+ or Cl was accumulated to a certain high level in plants, the low salt-tolerant plants would be dead. Wild soybean individuals could die when their stems accumulated Na+ and Cl to the range of 3.239–4.682% and 4.639–6.328%, and their leaves accumulated Na+ and Cl to the range of 1.754–2.349% and 4.126–5.073%, respectively. The salt-tolerant plants could be divided into three types of low, moderate, and high levels in ion accumulations. The contents of Na+ and Cl in the stems and leaves of the high salt-tolerant plants were less than those of the low salt-tolerant ones. With survival time prolonging, the contents of K+ in the stems and Ca2+and Mg2+ in the leaves were increased. There were two types for the content levels of Na+ and Cl ions in stems and leaves of the survival plants, i.e. a low-level accumulation and a high-level accumulation, suggesting that the salt-tolerant wild soybean lines may have two kinds of mechanisms for the salt tolerance: one is high bearing and another is low absorption.

Key words: Glycine soja, Saline-alkali stress, Ions accumulation, Mechanisms of salt tolerance

[1]Wang K-J(王克晶), Li F-S(李福山). General situation of wild soybean (G. soja) germplasm resources and its utilization of introgression into cultivated soybean in China. Rev China Agric Sci Technol (中国农业科技导报), 2000, 2(6): 69–72 (in Chinese with English abstract)
[2]Zhang Y(张艳). Salt-tolerance mechanism and seed quality of offspring gained by crossing Glycine max with Glycin soja. Nanjing: Nanjing Agricultural University, 2005. pp 15–54 (in Chinese)
[3]Chen X-Q(陈宣钦), Yu B-J(於丙军), Liu Y-L(刘友良). Relationship between chloride tolerance and polyamine accumulation in Glycine max, Glycine soja, and their hybrid seedlings. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(1): 46–52 (in Chinese with English abstract)
[4]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plant. Ann Bot, 2003, 91: 503–527
[5]Sun J-C(孙建昌), Wang X-S (王兴盛). Yang S-L(杨生龙). Progress of research on salt resistance in plants. Agric Res Arid Areas (干旱地区农业研究), 2008, 26(1): 226–230 (in Chinese with English abstract)
[6]Yang X-Y(杨晓英), Zhang W-H(章文华), Wang Q-Y(王庆亚), Liu Y-L(刘友良). Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation. Chin J Appl Ecol (应用生态学报), 2003, 14(12): 2237–2240 (in Chinese with English abstract)
[7]Yu B-J(於丙军), Luo Q-Y(罗庆云), Liu Y-L(刘友良). Effects of salt stress on growth and ionic distribution of salt-born Glycine soja. Acta Agron Sin (作物学报), 2001, 27(6): 776–780 (in Chinese with English abstract)
[8]Zhang M-Y(张美云), Qian J(钱吉), Zhong Y(钟扬), Zheng S-Z(郑师章). Studies on some physiological characteristics of salt-tolerance in wild soybeans (Glycine soja). J Fudan Univ (复旦学报), 2002, 41(6): 669–673(in Chinese with English abstract)
[9]Yang X-Y(杨晓英), Liu Y-L(刘友良), Luo Q-Y(罗庆云), Liu Z-P(刘兆普). Accumulation of Na+ and Cl– in the leaves of wild soybean seedlings lead to the oxidative damage under salt stress. Soybean Sci (大豆科学), 2003, 22(2): 83–87 (in Chinese with English abstract)
[10]Fu C(付畅), Guan Y(关旸), Xu N(徐娜). Effect of salt stress on the activity of antioxidative enzymes of Glycine soja and Glycine max. Soybean Sci (大豆科学), 2007, 26(2): 144–148 (in Chinese with English abstract)
[11]Wang H-X(王洪新), Hu Z-A(胡志昂), Zhong M(钟敏), Lu W-J(陆文静), Wei W(魏伟), Yun R(恽锐), Qian Y-Q(钱迎倩). Genetic differentiation and physiological adaptation of wild soybean (Glycine soja) populations under saline conditions: isozymatic and random amplified polymorphic DNA study. Acta Bot Sin (植物学报), 1997, 39(1): 39–42 (in Chinese with English abstract)
[12]Shi F-Y(史凤玉), Long R(龙茹), Zhu Y-B(朱英波), Yang Q(杨晴), Li G-L(李桂兰), Qiao Y-K(乔亚科). Research progress in salt-tolerance ability of wild soybean (Glycine soja L.). J Hebei Norm Univ Sci Technol (河北科技师范学院学报), 2008, 22(1): 69–72 (in Chinese with English abstract)
[13]Abel G H, Mackenzie A J. Salt tolerance of soybean varieties (Glycine max. L. Merrill) during germination and later growth. Crop Sci, 1964, 4: 157–161
[14]Luo Q Y, Yu B J, Liu Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol, 2003, 16: 1003–1012
[15]Guo B-S(郭宝生), Weng Y-J(翁跃进). Salt tolerance mechanism and molecular markers of genes associated with salt tolerance in soybean. Chin Bull Bot (植物学通报), 2004, 21(1): 113–120 (in Chinese with English abstract)
[16]Li C-Y(李长润), Liu Y-L(刘友良). Studies of K+, Na+ selectivity during ion uptake and transport and salt tolerance of leaf cells of wheat seedlings under salt stress conditions. J Nanjing Agric Univ (南京农业大学学报), 1993, 16(1): 16–20 (in Chinese with English abstract)
[17]Wang B-S(王宝山), Zou Q(邹琦). Response of different organ growth of sorghum to NaCl stress and the threshold salinity. Acta Bot Boreal-Occident Sin (西北植物学报), 1997, 17(3): 279–285 (in Chinese with English abstract)
[18]Zhao K-F(赵可夫), Fan H(范海). Halophytes and Their Physiological Adaptation to the Saline Habitat. Beijing: Science Press, 2005. pp 25–27 (in Chinese)
[19]Niu F-X(钮福祥), Hua X-X(华希新), Guo X-D(郭小丁), Wu J-Y(邬景禹), Li H-M(李洪民), Ding C-W(丁成伟). Studies on several physiological indexes of the drought resistance of sweet potato and its comprehensive evaluation. Acta Agron Sin (作物学报), 1996, 22(4): 392–398 (in Chinese with English abstract)
[20]Xiao X-H(肖鑫辉), Li X-H(李向华), Liu Y(刘洋), Wang K-J(王克晶). Identification and assessment of salt-tolerant germplasm of wild soybean (Glycine soja) in high saline soil. J Plant Genet Resour (植物遗传资源学报), 2009, 10(3): 392–398 (in Chinese with English abstract)
[21]Bañuls J, Legaz F, Primo-Millo E. Salinity-calcium interactions on growth and ionic concentration of Citrus plants. Plant Soil, 1991, 133: 39–46
[22]Zhao K-F(赵可夫), Fan H(范海). Halophytes and their physiological adaptation to the saline habitat. Beijing: Science Press, 2005. pp 23–24 (in Chinese)
[23]Liu D-X(刘德玺), Wang Y-P(王友平), Sun M-G(孙明高), Liu G-M(刘桂民), Wang Z-M(王振猛), Hu B-G(胡宝刚), Yang Q-S(杨庆山). The study on distribution of salty ions in vegetative organs of Fraxinus pennsylvanica marsh with different tree ages. J Sichuan Agric Univ (四川农业大学学报), 2008, 26(3): 263–265 (in Chinese with English abstract)
[24]Lauchli A. Development the American society of plant physiologists. Symptom Sum Series, 1990, 4: 26
[25]Beck E H, Fettig S, Knake C. Specific and unspecific responses of plant s to cold and drought stress. J Biosci, 2007, 32: 501–510
[26]Qiao Y-K(乔亚科), Li G-L(李桂兰), Gao S-G(高书国), Bi Y-J(毕艳娟), You L-N(尤丽娜), Shi X-F(石向付), Zhang Y(张怡). Geographical distribution and salt-tolerance of wild soybean (G. soya) in inshore regions in Changli Hebei province. J Hebei Vocation-Tech Teach Coll (河北职业技术师范学院学报), 2001, 15(2): 9–13 (in Chinese with English abstract)
[27]Yang X-Y(杨晓英), Zhang W-H(章文华), Wang Q-Y(王庆亚), Liu Y-L(刘友良). Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation. Chin J Appl Ecol (应用生态学报), 2003, 14(12): 2237–2240 (in Chinese with English abstract)
[28]Wang R(王冉), Chen G-L(陈贵林), Song W(宋炜), Lü G-Y(吕桂云), Liang J(梁静), Li W-X(李卫欣). Effects of NaCl stress on cation contents in seedlings of two pumpkin varieties. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2006, 32(1): 94–98 (in Chinese with English abstract)
[1] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[2] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[3] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[4] 朱娉慧**,陈冉冉**,于洋,宋雪薇,李慧卿,杜建英,李强,丁晓东,朱延明*. 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析[J]. 作物学报, 2017, 43(09): 1319-1327.
[5] 陈晨, 孙晓丽, 刘艾林, 端木慧子, 于洋, 肖佳雷, 朱延明. 野生大豆碳酸盐胁迫应答基因GsMIPS2的克隆及功能分析[J]. 作物学报, 2015, 41(09): 1343-1352.
[6] 王吴彬,何庆元,杨红燕,向仕华,邢光南,赵团结,盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析[J]. 作物学报, 2013, 39(07): 1155-1163.
[7] 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788.
[8] 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽. 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析[J]. 作物学报, 2011, 37(08): 1351-1359.
[9] 王希,李勇,朱延明,柏锡,才华,纪巍. 野生大豆胁迫应答膜联蛋白基因的克隆及胁迫耐性分析[J]. 作物学报, 2010, 36(10): 1666-1673.
[10] 樊金萍;柏锡;李勇;纪巍;王希;才华;朱延明. 野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析[J]. 作物学报, 2008, 34(09): 1581-1587.
[11] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析 II. 优异等位变异的发掘[J]. 作物学报, 2008, 34(08): 1339-1349.
[12] 文自翔;赵团结;郑永战;刘顺湖;王春娥;王芳;盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析 I. 群体结构及关联标记[J]. 作物学报, 2008, 34(07): 1169-1178.
[13] 张跃强;关荣霞;刘章雄;常汝镇;姚源松;邱丽娟. 利用大豆核心种质部分样本鉴定28K和30K过敏蛋白缺失材料[J]. 作物学报, 2006, 32(03): 324-329.
[14] 李福山;李向华. 野生大豆在自然界中光温反应的规律[J]. 作物学报, 2003, 29(05): 670-675.
[15] 董英山;庄炳昌;赵丽梅;孙寰;张明;何孟元. 中国野生大豆遗传多样性中心[J]. 作物学报, 2000, 26(05): 521-527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!