欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1752-1762.doi: 10.3724/SP.J.1006.2011.01752

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

CIMMYT种质对四川、云南、甘肃和新疆春性小麦产量遗传增益的贡献

张勇1,李式昭2,吴振录3,杨文雄4,于亚雄5,夏先春1,何中虎1,6,*   

  1. 1中国农业科学院作物科学研究所/国家小麦改良中心/国家农作物基因资源与基因改良重大科学工程, 北京 100081;2四川省农业科学院作物研究所,四川成都 610066;3 新疆农业科学院核技术生物技术研究所,新疆乌鲁木齐 830000;4甘肃省农业科学院作物研究所, 甘肃兰州730070;5云南省农业科学院粮食作物研究所,云南昆明650205;6 CIMMYT中国办事处,北京100081
  • 收稿日期:2011-02-09 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)重大国际合作项目(2006-G2)和中央级公益性科研院所基本科研业务费专项资金资助。

Contribution of CIMMYT Wheat Germplasm to Genetic Improvement of Grain Yield in Spring Wheat of Sichuan, Yunnan, Gansu, and Xinjiang Provinces

ZHANG Yong1,LI Shi-Zhao2,WU Zhen-Lu3,YANG Wen-Xiong4,YU Ya-Xiong5,XIA Xian-Chun1,HE Zhong-Hu1,6,*   

  1. 1 Institute of Crop Sciences / National Wheat Improvement Center, Chinese Academy of Agriculture Sciences, Beijing 100081, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 3 China Institute of Nuclear & Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; 4 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 5 Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; 6 CIMMYT-China Office, Beijing 100081, China
  • Received:2011-02-09 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

摘要: 研究历史品种产量潜力变化规律有助于提高小麦育种水平。2007—2009连续2年度将来自四川、云南、甘肃和新疆的代表性59个品种分别种植在四川成都、云南丽江、甘肃武威和新疆昌吉,在肥水供应充足、控制病虫害和倒伏的条件下分析了产量和相关农艺性状的变化趋势。结果表明,四川、云南、甘肃和新疆品种的产量随育成年份显著增加,年遗传增益分别为0.73%、0.34%、0.58%和1.43%。产量遗传增益四川品种表现与产量构成因子关系不密切;云南品种主要表现为减少穗数和增加穗粒数;甘肃品种主要表现为增加穗粒数;新疆品种主要表现为增加主穗粒重和收获指数,并与成熟期提早及株高降低有一定关系。各地区品种中Rht-B1bRht-D1b矮秆基因均来自CIMMYT种质,其产量潜力的提高主要得益于CIMMYT种质的引进和有效利用,在四川和云南,CIMMYT种质的主要贡献是提高品种的条锈病抗性;而在甘肃和新疆,其被利用的主要特性是矮秆、高产、穗粒数多及广泛适应性。

关键词: 普通小麦, 产量潜力, CIMMYT种质

Abstract: Information on advances in wheat (Triticum aestivum L.) productivity is essential for genetic improvement on yield potential. Four yield potential trials with totally 59 leading cultivars from Sichuan, Yunnan, Gansu, and Xinjiang, China were conducted using a randomized complete block design with three replications under controlled environments in two successive cropping seasons from 2007 to 2009. The experimental sites were located in Chengdu in Sichuan province, Lijiang in Yunnan province, Wuwei in Gansu province, and Changji in Xinjiang province. Molecular markers were used to detect the presence of dwarfing genes and 1B/1R translocation. The results indicated that the annual genetic gain in yield in Sichuan, Yunnan, Gansu, and Xinjiang was 0.73%, 0.34%, 0.58%, and 1.43%, respectively. There was no obvious trend of yield component improvement for yield increase in Sichuan province; while reduced spikes per square meter and increased kernels per spike were the main factor for yield increase in Yunnan province; increased kernels per spike were the main factor for yield increase in Gansu province; and increased kernel weight of main spike and harvest index were the main factor for yield increase in Xinjiang province, together with the contribution from reduced plant height and earlier maturity. It also indicated that the dwarfing genes Rht-B1b and Rht-D1b were all from CIMMYT lines, and the significant progresses of genetic gain in yield in the four provinces were mainly due to the direct and indirect use of CIMMYT germplasm. Stripe rust resistance was the main contribution of CIMMYT germplasm in Sichuan and Yunnan; while CIMMYT germplasm contributed to high yield potential with high kernel number per spike, short plant height, and wide adaptability in Xinjiang and Gansu.

Key words: T. aestivum, yield potential, CIMMYT germplasm

[1]Zhou Y, He Z H, Sui X X, Xia X C, Zhang X K, Zhang G S. Genetic improvement of grain yield and associated traits in the Northern China Winter Wheat region from 1960 to 2000. Crop Sci, 2007, 47: 245–253
[2]Zhou Y, Zhu H Z, Cai S B, He Z H, Zhang X K, Xia X C, Zhang G S. Genetic improvement of grain yield and associated traits in the Southern China Winter Wheat region: 1949 to 2000. Euphytica, 2007, 157: 465–473
[3]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[4]Brancourt Hulmel M, Doussinault G, Lecomte C, Berard P, Buanec B L, Trottet M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci, 2003, 43: 37-45
[5]Donmez E, Sears R G, Shroyer J P, Paulsen G M. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci, 2001, 41: 1412–1419
[6]McCaig T N, DePauw R M. Breeding hard red spring wheat in western Canada: historical trends in yield and related variables. Can J Plant Sci, 1995, 75: 387–393
[7]Perry M, Dòntuono M. Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Aust J Agric Res, 1989, 40: 457–472
[8]Calderni D F, Dreccer M F, Slafer G A. Genetic improvement in wheat yield and associated traits: a reexamination of previous results and the latest trends. Plant Breed, 1995, 114: 108–112
[9]Sayre K D, Rajaram S, Fischer R F. Yield potential progress in short bread wheat in northwest Mexico. Crop Sci, 1997, 37: 36–42
[10]Ortiz Monasterio R, Sayre K D, Rajaram S, McMahon M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci, 1997, 37: 898–904
[11]Wu Z-S(吴兆苏), Wei X-Z(魏燮中). Genetic improvement and trends in yield and its associated traits of wheat cultivars in middle and low reaches of Yangtse River. Sci Agric Sin (中国农业科学), 1984, 17(3): 14–20 (in Chinese with English abstract)
[12]Yu S-R(俞世蓉), Wu Z-S(吴兆苏), Yang Z-P(杨竹平). Genetic improvement in yield and its associated traits of wheat cultivars in northern Jiangsu province since 1970s. Sci Agric Sin (中国农业科学), 1988, 21(4): 15–21 (in Chinese with English abstract)
[13]Tian X-M(田笑明). Genetic improvement and trends in yield and its associated traits of wheat cultivars in Xinjiang. Acta Agron Sin (作物学报), 1991, 17(4): 297–320 (in Chinese with English abstract)
[14]Chen H-B(陈化榜), Li Q-Q(李晴祺). Genetic improvement in yield and its associated traits of wheat cultivars in Shandong Province since 1950s. J Shandong Agric Unv (山东农业大学学报), 1991, 22(1): 95–98 (in Chinese)
[15]Lei Z-S(雷振声), Lin Z-J(林作楫). Genetic improvement in yield and its associated traits of wheat cultivars in Henan province. Sci Agric Sin (中国农业科学), 1995, 28(suppl): 28–33 (in Chinese with English abstract)
[16]Xu W-G(许为钢), Hu L(胡琳), Wu Z-S(吴兆苏), Gai J-Y(盖钧镒). Studies on genetic improvement of yield and yield components of wheat cultivars in mid-Shaanxi area. Acta Agron Sin (作物学报), 2000, 26(3): 352–358 (in Chinese with English abstract)
[17]He Z-H(何中虎), Zhang A-M(张爱民). Advance of Wheat Breeding in China (中国小麦育种研究增益). Beijing: China Science and Technology Press, 2002 (in Chinese)
[18]Zhang Y(张勇), Wu Z-L(吴振录), Zhang A-M(张爱民), van Ginkel M, He Z-H(何中虎). Adaptation of CIMMYT wheat germplasm in Chines spring wheat regions. Sci Agric Sin (中国农业科学), 2006, 39(4): 655–663 (in Chinese with English abstract)
[19]He Z H, Rajaram S, Xin Z Y, Huang G Z, eds. A History of Wheat Breeding in China. Mexico, D.F.: CIMMYT, 2001
[20]He Z H, Rajaram S. China/CIMMYT collaboration on wheat breeding and germplasm exchange: results of 10 years of shuttle breeding (1984–1994). Wheat Special Report No.46. Mexico, D.F.: CIMMYT, 1997
[21]Pingali P L, ed. CIMMYT 1989–1999 World Wheat Facts and Trends. Global Wheat Research in a Changing World: Challenges and Achievements. Mexico, D.F.: CIMMYT. 1999
[22]SAS Institute. SAS User’s Guide: Statistics. SAS Institute, Cary, NC. 2000
[23]Becker, W A. Manuel for Quantitative Genetics, 4th edn. Academic Enterprises Pullman, WA. 1984
[24]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539–546
[25]Wan X-L(宛秀兰). A preliminary study on the adaptability of Mexican wheat varieties in China. Acta Agron Sin (作物学报), 1981, 17(4): 249–257 (in Chinese with English abstract)
[26]Yao J-B(姚金保), Zhou C-F(周朝飞), Qian C-M(钱存鸣), Yao G-C(姚国才), Yang X-M(杨学明). The progress of the shuttling breeding program between Jiangsu and CIMMYT. J Tritical Crops (麦类作物学报), 1998, 18(5): 14–16 (in Chinese with English abstract)
[27]Yuan H-M(袁汉民), Wu S-J(吴淑筠), Zhang F-G(张富国), Qian X-X(钱晓曦). Studies on genetic resources of Mexican wheat in Ningxia. Ningxia Agron & For (宁夏农林科技), 1998, (4): 8–12 (in Chinese with English abstract)
[28]Zou Y-C(邹裕春), Yang W-Y(杨武云), Zhu H-Z(朱华忠), Yang E-N(杨恩年), Pu Z-J(蒲宗君), Wu L(伍铃), Zhang Y(张颙), Tang Y-L(汤永禄), Huang G(黄钢), Li Y-J(李跃建), He Z-H(何中虎), Singh R, Rajaram S. Utilization of CIMMYT germplasm and breeding technologies in wheat improvement in Sichuan, China. Southwest China J Agric Sci (西南农业学报), 2007, 20(2):183–190 (in Chinese with English abstract)
[29]Fischer R A, Edmeades G O. Breeding and cereal yield progress. Crop Sci, 2010, 50: 85–98
[30]Reynolds M, Foulkes M J, Slafer G A, Berry P, Parry M A J, Snape J W, Angus W J. Raising yield potential in wheat. J Exp Bot, 2009, 60: 1899–1918
[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 杜祥备, 习敏, 孔令聪, 吴文革, 陈金华, 许有尊, 周永进. 江淮地区稻-麦周年产量差及其与资源利用关系[J]. 作物学报, 2021, 47(2): 351-358.
[3] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[4] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[5] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[6] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[7] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[8] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[9] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[10] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[11] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[12] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[13] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[14] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[15] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!